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Abstract
Introduction: Genetic and environmental factors contribute to 
predisposition to cardiovascular disease (CVD). Complex 
pathophysiological processes that may modulate this effect are unknown.

Objective: Evaluate whether genetic and environmental interactions may 
confer CAD susceptibility and assess CAD recurrence among patients 
prospectively followed up.

Methods:  A  case-control study including 3161 participants, 1724 CAD 
patients (78.7% male) and 1437 controls (76.3% male) were followed 
prospectively (5.6±4.5 years). We evaluated the gene-gene interplay 
of 33 SNPs associated with CAD using the Multifactor Dimensionality 
Reduction (MDR) to estimate the best gene-gene model for CAD risk. 
Multivariate regression analysis confirmed the MDR method and 
evaluated the environmental impact on genetic risk. Kaplan-Meier 
assessed the survival curves, and Cox proportional regression analysis 
was performed with a hazard ratio (HR) for recurrent events.

Results: After MDR, the allelic interaction between TCF21 rs12190287 
(GC) and APOE rs7412/rs429358 (ε3/ε4, ε4/ε4) was the best model 
with the highest likelihood for CAD, confirmed by the classic logistic 
regression (OR=1.99, 95%CI 1.39–2.87; p<0.0001). Additionally, the 
genetic interaction with environmental factors synergistically increases 
the individual’s propensity to CAD. Kaplan-Meier showed patients’ 
cumulative risk for events (HR) 70% higher in the risk model vs the non-
risk combination. After Cox regression, TCF21 and APOE combination 
were independently associated with CV events occurrence, with 
statistical significance (p=0.014).

Conclusions: Our findings identified two genetic loci with the best 
interaction for CAD risk. This combination should be further investigated 
to clarify the underlying mechanism of CAD susceptibility and better 
understand CAD pathophysiology providing personalized information for 
potential new therapies.

Keywords: Coronary Artery Disease; Genetic variants; Environmental 
factors; Multifactor Dimensionality Reduction (MDR) method; Cardiovascular 
events.  

Introduction
Current statistics from World Health Organization (WHO) show that 

cardiovascular disease (CVD) is a primary cause of death across the globe. 



Mendonça MI, et al., Cardiol Cardiovasc Med 2023 
DOI:10.26502/fccm.92920332

Citation:	Maria	Isabel	Mendonça,	Marina	Santos,	Margarida	Temtem,	Débora	Sá,	Francisco	Sousa,	Eva	Henriques,	Sónia	Freitas,	Sofia	Borges,	
Mariana Rodrigues, Graça Guerra, António Drumond, Ana Célia Sousa, Roberto Palma Reis. Synergy among genes and 
genes-environment on coronary artery disease risk and prognosis. Cardiology and Cardiovascular Medicine.       7 (2023): 218-228.

Volume 7 • Issue 3 219 

Coronary Artery Disease (CAD), a common type of CVD, 
is a lethal illness that kills millions of individuals each year 
worldwide [1]. This disorder is multifactorial, resulting in the 
complex interplay of genetic, epigenetic, and environmental 
factors [2]. Even though the success of Genome-Wide 
Association Studies (GWAS), only a small number of 
genetic factors have been recognized with a genome-wide 
significance which explains a minor fraction of disease 
etiology. The affinity between complex diseases and multiple 
genes and their interactions is unknown. Whether a genetic 
effect works mainly through a complex mechanism involving 
numerous genes and environmental influences, the effect can 
be neglected when the gene is observed individually without 
possible interactions with other unknown factors. Exploring 
gene-gene and gene-environment interactions is essential to 
understanding the etiology of common complex diseases [3]. 
During the former years, numerous attempts have been made 
to include clinical decision-assist systems to predict CAD. 
These predictive models support clinicians and healthcare 
providers with individualized information to handle CAD and 
implement better and tailored treatments for their patients [4].

New statistical methods to detect nonlinear associations 
between variables emerged beyond logistic regression; new 
computational methods of machine learning and artificial 
intelligence to compute the CAD risk have been considered 
with great potential in gene-gene and gene-environment 
analysis. Logistic regression is the most frequently used to 
estimate the gene-gene interaction in genetic correlation 
studies [5-7]. Nevertheless, it faces a multicollinearity 
question when the Single Nucleotide Polymorphisms 
(SNPs) are in linkage disequilibrium (LD). Multicollinearity 
among independent variables will result in less reliable 
statistical inferences. Therefore, a considerable sample size is 
necessary to estimate logistic regression parameters to avoid 
problems modelling high-order interactions. To handle this 
issue, Ritchie et al. proposed a non-parametric and model-
free method, multifactor dimensionality reduction (MDR) 
[8]. MDR has been extensively utilized to identify gene-gene 
interaction as it does not require any concepts of the genetic 
mode of inheritance [9-12]. Furthermore, it performs well for 
small trials and in the presence of LD. MDR analysis is focused 
on k-fold cross-validation (CV) to prevent overfitting issues, 
identify gene-gene synergy and display which combinations 
of genotypes are at high or low risk in the disease of concern.

In these circumstances, it is crucial to evaluate, with 
advanced statistical tools, the influence of genetics and 
conventional risk factors on the appearance and prognosis of 
CAD.

Objectives
In the present study, we propose to investigate the best 

model of genetic interactions for CAD risk using the MDR 
method. Then, we aim to validate these models using the 
classic logistic regression analysis and assess the genetic 

interaction with environmental factors. Finally, we intend 
to determine the CAD prognosis with the high and low-risk 
allelic combination from MDR analysis.

Methods
Study population

A case-control study included 3161 participants, 1724 
CAD patients (78.7% male) and 1437 controls (76.3% 
male) with an extended prospective follow-up. Consecutive 
coronary patients were recruited from the Cardiology 
Department of Funchal Hospital Center (Madeira). All 
data were recorded in a regional quality clinical register 
(MADEIRA/GESTINTERNMENT) covering more than 
90.0% spectrum of patients with acute coronary syndrome 
(ACS) and stable angina (SAP) that occurred in the Madeira 
Archipelago [13]. After stabilization and hospital discharge, 
only patients in the chronic phase are considered to enter the 
study. After inclusion, we collected the demographic, lifestyle 
and physical examination data by questionnaire survey and 
physical measurement. The questionnaire included available 
demographic and lifestyle information.

The controls were selected from the “normal” Madeira 
Archipelago population (without a known personal history of 
CVD), selected to be similar to CAD patients (cases) in terms 
of gender and age.

Follow-up and outcome evaluation 
Patients with CAD (n=1724) were prospectively followed 

up from January 2001 to June 2022 (average 5.6±4.5 years) 
by physician investigators via a presential interview with a 
standard questionnaire previously defined [13]. All-cause 
vascular morbidity and mortality, we included recurring 
acute coronary syndrome (myocardial infarction and unstable 
angina), coronary revascularization (percutaneous or surgical 
coronary intervention) and readmission due to heart failure, 
ischemic stroke, and peripheral vascular disease.

Data on cardiovascular death was achieved from medical 
certificates and reports from family members. 

All traditional and biochemical variables collected in this 
study were described elsewhere [14].

Genetic information
Selection of genetic variants for MDR

In the present study, we included 33 genetic variants 
previously associated with CAD by GWAS and already 
investigated by our group in the GENEMACOR study 
[13]. These SNPs are linked with inflammation, lipid and 
glycemic metabolism, oxidation, endothelial dysfunction, 
vascular remodelling and atherosclerosis progress. They 
were: PSRC1 rs599839, PCSK9 rs2114580, KIF6 rs20455, 
LPA rs3798220, ZNF259 rs964184, APOE rs7412/
rs429358, ADIPOQ rs266729, IGF2BP2 rs4402960, PPARG 
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rs1801282, SLC30A8 rs1326634, TCF7L2 rs7903146, 
TAS2R50 rs1376251, FTO rs8050136, MC4R rs17782313, 
HNF4A rs1884613, AGT rs699, AGT1R rs5186, ACE I/D 
rs4340, MTHFR rs1801131, MTHFR rs1801133, MTHFD1L 
rs6922269, PON1 rs705379, PON1 rs662, PON1 rs854560, 
MIA3 rs17465637, GJA4 rs618675, TCF21 rs12190287, 
PHACTR1 rs1332844, ZC3HC1 rs11556924, CDKN2B-AS1 
rs1333049, CDKN2B-AS1 rs4977574, SMAD3 rs17228212 
and ADAMTS7 rs3825807. All their genetic attributes, such as 
SNP identification (rs), nearest gene, chromosomal position, 
minor allelic frequency (MAF) and putative function, were 
recorded in a comprehensive table (Supplementary Table 
S1). In addition, it displays the OR (95% CI) found in our 
population’s most significant model (dominant, recessive, 
additive and allelic). Only LPA rs3798220 T>C was rejected 
for MDR analysis because it was inconsistent with Hardy–
Weinberg equilibrium (p<0.002). The remaining 32 SNPs 
were used for gene-gene MDR interactions. 

Genetic analysis 

All participants’ genomic DNA was extracted from an 
80 μL aliquot of whole blood collected in tubes containing 
EDTA using standard phenol/chloroform methodologies 
with ethanol precipitation. A TaqMan allelic discrimination 
assay for genotyping was performed using labelled probes 
and primers pre-established by the supplier (TaqMan SNP 
Genotyping Assays, Applied Biosystems). All reactions were 
done on an Applied Biosystems 7300 Real-Time PCR System, 
and genotypes were determined using the 7300 System SDS 
Software (Applied Biosystems, Foster City, USA).

Statistical analysis 
Descriptive and comparative analysis

Continuous variables were defined as means (±SD) or 
medians (Min-Max), as appropriate. Categorical variables 
were determined as frequencies and proportions. We used the 
t-Student test (or Mann-Whitney) to compare continuous data
and the χ2 test to compare categorical variables.

MDR model  

The genotypes of each studied variant were grouped 
into wild-type (zero risk allele), heterozygous (one risk 
allele), and high-risk genotype (two risk alleles). Briefly, the 
MDR evaluates the maximum risk probability of gene-gene 
interaction and aggregates the total values for all individuals. 
Whether the average score is equal to or higher than a limit of 
0, the identified genotype combination may be established as 
a high-risk model; on the other hand, if the score is lower than 
0, it could be defined as a low-risk model. The score-built 
MDR method uses the data-reduction strategy reducing the 
dimensionality from multidimensional to one-dimensional. 
We intend to identify the gene-gene model combinations that 
exhibit the best relationship with the phenotype (CAD) from 
all potential genetic combinations. The test accuracy and 

cross-validation consistency get their maximum when proper 
multilocus models are achieved [15]. 

For genetic interaction models, we further assessed 
multivariate logistic regression analysis to confirm the 
best model identified by MDR. After adjustment for age, 
gender, and other conventional risk factors, multivariate 
logistic regression calculated which model best predicts 
the risk of CAD with a respective odds ratio (OR) and 95% 
confidence intervals (CI). Individuals at low genetic risk with 
beneficial environmental factors were the reference group for 
estimating gene–environment analysis. The significance of 
the multiplicative interaction between the genetic risk model 
and each unhealthy lifestyle factor (including hypertension, 
smoking and dyslipidemia) was determined by multivariate 
logistic regression of cumulative effects. 

Survival analysis: Kaplan-Meier estimator and Cox 
proportional model 

Kaplan-Meier estimator assessed the cumulative hazard 
rate of CV events among subjects carrying the combined risk 
alleles of TCF21 rs12190287 and APOE rs7412/rs429358, 
compared with the individual’s wild-type genotypes. In 
addition, we compared the event-free survival time of this 
genetic risk model with the participant’s wild-type allelic 
combination by the log-rank test.

The Cox proportional regression analysis with a respective 
hazard ratio (HR) for the relative risk of recurrent events was 
performed with the mentioned genetic risk model from MDR 
analysis adjusted to traditional cardiovascular risk factors.

All analyses were conducted with SPSS software (version 
25.0, SPSS Inc). All corresponding P values are two-sided; 
p<0.05 was considered statistically significant.

Results
Basal Characteristics of the population (demographic, 
biochemical and clinical features)

Compared with controls, CAD patients had a significantly 
higher prevalence of all risk factors, namely physical 
inactivity, smoking, hypertension, dyslipidemia, diabetes, 
alcohol abuse, CV family history, BMI, triglycerides and 
creatinine clearance (CrCl) (all p<0.05) (Table 1). Total 
cholesterol, LDL and non-HDL presented higher levels in 
controls as patients were medicated with statins.

Gene-Gene interaction for CAD probability by MDR 
analysis

For CAD risk assessment, MDR performed all potential 
genotype combinations and recognized them as high- or low-
risk, depending on the percentage of cases and controls in the 
population, testing the accuracy and consistency of the cross-
validation (Fig. 1). The best model with all combinations is 
found when the maximum values are obtained.
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There were five low-risk (lighter grey) and four high-risk 
(darker grey) models of genotype combinations. The four 
high-risk genotypic combinations of TCF21 and APOE were 
CC+ ε2/ε2, ε2/ε3, ε3/ε3; CC+ ε2/ε4; CC+ ε3/ε4, ε4/ε4 and 
GC+ ε3/ε4, ε4/ε4. The five low-risk associations are: GG+ 
ε2/ε2, ε2/ε3, ε3/ε3; GC+ ε2/ε2, ε2/ε3, ε3/ε3; GG+ ε2/ε4; GC+ 
ε2/ε4 and GG+ ε3/ε4, ε4/ε4 (Fig. 1).

In our study, MDR determined that the two-locus 
interaction model, TCF21 rs12190287 plus APOE rs7412/
rs429358, had high cross-validation consistency (with a score 
of 10/10) and balanced accuracy, sensitivity and specificity, 
which was determined to be the best two loci combination. 
This model was validated through 1000 permutations (Table 
2 and Fig. 2 A, B and Fig. 3).

Validation of genotypic models by traditional 
statistical methods

In order to validate the MDR method, we implemented 
a classic logistic regression analysis, after adjustment for 
conventional risk factors, regarding the CAD risk of all high 
and low-risk genotypes combinations used to obtain the best 
model (Table 3).

The interaction model with a more significant impact on 
CAD risk was TCF21 heterozygous genotype and APOE ε3/
ε4, ε4/ε4 with an OR of approximately 2.0 (p<0.0001).

The combined impact of environmental and genetic 
factors on CAD risk

In this work, we intended to investigate whether 

environmental factors (including hypertension, smoking and 
dyslipidemia) could influence susceptibility to CAD in the 
population at high genetic risk. 

After adjustment for conventional coronary risk factors 
and correction for multiple comparisons, we found that 
hypertension conferred a significantly higher risk for CAD, 
whatever the genetic risk profiles. Hypertensive subjects who 
carried the combined at-risk alleles of TCF21 rs12190287 
and APOE rs7412/rs429358 had a remarkably increased 
risk for CAD (OR=2.59; 95%CI 1.54-4.35; p<0.0001) 
compared with those having wild-type genotypes and without 

Variables Total (n=3161) CAD patients (n=1724) Controls (n=1437) P-value
Age, years 53.1 ± 7.8 53.3 ± 7.9 52.8 ± 7.8 0.062

Male sex, n (%) 2454 (77.6) 1357 (78.7) 1097 (76.3) 0.111

Physical inactivity, n (%) 1699 (53.7) 1080 (62.6) 619 (43.1) <0.0001
Smoking status, n (%) 1160 (36.7) 818 (47.4) 342 (23.8) <0.0001
Hypertension, n (%) 1974 (62.4) 1223 (70.9) 751 (52.3) <0.0001
Dyslipidemia, n (%) 2540 (80.4) 1534 (89.0) 1006 (70.0) <0.0001

Diabetes, n (%) 782 (24.7) 584 (33.9) 198 (13.8) <0.0001
Alcohol abuse, n (%) 478 (15.1) 282 (16.4) 196 (13.6) 0.034

CV family history, n (%) 601 (19.0) 413 (24.0) 188 (13.1) <0.0001
BMI, Kg/m2 28.4 ± 4.4 28.7 ± 4.4 28.1 ± 4.4 <0.0001
PWV, m/s 8.5 ± 2.1 8.7 ± 2.4 8.3 ± 1.7 <0.0001

Total cholesterol, mg/dl 192.0 (77.0 – 437.0) 181.0 (77.0 – 437.0) 204.0 (92.0 – 361.0) <0.0001
LDL cholesterol, mg/dl 114.0 (9.6 – 598.0) 106.2 (15.6 – 598.0) 125.0 (9.6 – 582.0) <0.0001
HDL cholesterol, mg/dl 45.0 (12.0 – 119.0) 42.0 (18.2 – 115.8) 49.0 (12.0 – 119.0) <0.0001
Non-HDL cholesterol 147.0 (43.0 – 399.0) 138.0 (50.0 – 399.0) 154.9 (43.0 – 324.0) <0.0001
Triglycerides, mg/dl 125.0 (4.9 – 2500.0) 136.0 (10.2 – 2500.0) 113.0 (4.9 – 1361.0) <0.0001

CrCl, n (%)* 173 (5.5) 126 (7.3) 47 (3.3) <0.0001

CAD – Coronary artery disease; CV – Cardiovascular; BMI – Body mass index; PWV – Pulse wave velocity; LDL – Low-density lipoprotein; HDL 
– High-density lipoprotein; CrCl – Creatinine Clearance; *Cockroft-Gault<60 ml/min.; Continuous variables presented as mean ± SD or median
(min-max). Statistically significant for p<0.05.

Table 1: Basal Characteristics of the Population

Figure 1: Best model with APOE and TCF21 genetic variants for 
CAD risk.
Abbreviations: AA – ε2/ε2, ε3/ε3, ε2/ε3; AB – ε2/ε4; BB – ε3/ε4, 
ε4/ε4.
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hypertension. The reference group included individuals 
without hypertension and carrying wild-type genotypes of 
rs12190287 and rs7412/429358 (Fig. 4).

After adjusting for conventional coronary risk factors, 
smokers who carried the combined at-risk alleles TCF21 
rs12190287 and APOE rs7412/rs429358 had a significantly 
increased risk for CAD (OR=5.46; 95%CI 3.12-9.55; 
p<0.0001). However, smoking increases the cardiovascular 
(CV) risk independently of the genetic profiles (Fig. 5).

Furthermore, we were interested in studying the influence 
of this genetic combination with dyslipidemia on CAD 
susceptibility among people at high genetic risk. Results 
show dyslipidemia increases CAD risk (OR) in all genetic 
profiles (Fig. 6).

Prognosis of Coronary Heart Disease Patients 
(Survival Analysis)

Over the follow-up, 714 cardiovascular events occurred 
in CAD patients, of which 290 were cardiovascular deaths.

(A)

(B)

Figure 2: Assessment of gene-gene interactions: multifactorial dimensionality reduction analysis (MDR). 
(A) MDR Interaction Models. (B) MDR Dendrogram for SNP-SNP interaction.

No. of loci Model
Balanced accuracy

CV consistency
Training Testing

1 1 0.529 0.529 10/10

2 1, 2 0.548 0.548 10/10
3 1, 3, 2 0.558 0.513 03/10

4 1, 4, 5, 6 0.583 0.482 02/10

5 4, 7, 5, 6, 8 0.625 0.505 04/10

6 9, 10, 4, 7, 5, 6 0.689 0.499 03/10

Table 2:  Multilocus interactions to CAD susceptibility identified by MDR analysis
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Figure 3: Balanced accuracy of the genetic loci models individually.

TCF21 rs12190287 APOE rs7412/rs429358 Cases (n=1724) Controls (n=1437) Odds ratio (95% CI) P value*

GG AA 129 (7.5) 137 (9.5) Reference --

GG AB 0 (0.0) 1 (0.1) Undefined --

GG BB 35 (2.0) 32 (2.2) 1.251 (0.695 – 2.254) 0.455

GC AA 531 (30.8) 536 (37.3) 1.185 (0.880 – 1.595) 0.264

GC AB 11 (0.6) 12 (0.8) 0.834 (0.319 – 2.176) 0.71

GC BB 202 (11.7) 122 (8.5) 1.994 (1.385 – 2.871) <0.0001

CC AA 607 (35.2) 444 (30.9) 1.492 (1.108 – 2.008) 0.008

CC AB 14 (0.8) 9 (0.6) 2.099 (0.817 – 5.394) 0.124

CC BB 195 (11.3) 144 (10.0) 1.517 (1.063 – 2.166) 0.022

GC+CC AB+BB 422 (24.5) 287 (20.0) 1.324 (1.097 – 1.599) 0.003

Table 3: Association between TCF21 rs12190287 and APOE rs7412/rs429358 variants through multivariate analysis

AA – ε2/ε2, ε3/ε3, ε2/ε3; AB – ε2/ε4; BB – ε3/ε4, ε4/ε4. *P values obtained by the logistic regression analysis after adjustment for conventional risk 
factors (gender, age, hypertension, diabetes, dyslipidemia, smoking habits, physical inactivity, obesity and alcohol abuse).

Figure 4: The combined interaction effects of TCF21 rs12190287 
and APOE rs7412/rs429358 with hypertension on CAD risk.

Abbreviations: Ref, reference group. AA and GG – wild-type gen-
otype and BB and CC - risk mutated genotype. AA – ε2/ε2, ε3/ε3, 
ε2/ε3; BB – ε3/ε4, ε4/ε4.

Figure 5: The combined interaction effects of TCF21 rs12190287 
and APOE rs7412/rs429358 with smoking on CAD risk. 
Abbreviations: Ref, reference group. AA – wild-type genotype and 
BB - risk mutated genotype. AA – ε2/ε2, ε3/ε3, ε2/ε3; BB – ε3/ε4, 
ε4/ε4.
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Kaplan- Meier Estimator
At fifteen years, Kaplan–Meier estimator showed a 

significantly higher cumulative hazard rate of cardiovascular 
events among subjects carrying the combined risk alleles of 
TCF21 rs12190287 and APOE rs7412/rs429358, compared 
with patients with the wild-type combination (Fig.7A). 
The cumulative hazard rate exposed the accumulated risk 
up to a specific time. In the context of CV events, the risk 
of recurrence (HR) at 15 years was 1.0 for the protector 
combination (GG+AA) and 1.7 for the risk interaction 
(GC+BB). The risk allele combination (GC+BB) was at 
higher risk over time, with statistical significance (p=0.014). 

When we estimated the event-free survival time of 
individuals carrying the TCF21 plus APOE genotype risk 
model (GC+BB) compared to those holding the wild-type 
combination (GG+AA), the first showed an event-free 
survival time of 18.5%. The wild-type genotype association 
exhibited a survival probability of 35.3% at fifteen years 
(Fig.7B).

Cox Regression Analysis

After Cox regression analysis, the individuals with GC+BB 
genotype combination presented a significantly higher risk 
of CV events development when compared with those with 
GG+AA combination (p=0.014). Also, the conventional risk 
factors independently associated with events recurrence were 
age and hypertension (p<0.05) (Fig. 8).

Figure 6: The combined interaction effects of TCF21 rs12190287 
and APOE rs7412/rs429358 with dyslipidemia on CV risk. 

Abbreviations: Ref - reference group. AA – wild-type genotype 
and BB - risk mutated genotype. AA – ε2/ε2, ε3/ε3, ε2/ε3; BB – ε3/
ε4, ε4/ε4.

Figure 8: Variables independently associated with events occurrence 
(Cox regression analysis).

GC+BB - allelic risk combination. BB – ε3/ε4, ε4/ε4. *P values 
obtained by the Cox regression analysis after adjustment for 
conventional risk factors (gender, age, hypertension, diabetes, 
dyslipidemia, smoking habits, physical inactivity, obesity and 
alcohol abuse).

Figure 7: Kaplan–Meier curves of CV events prediction among 
patients with high-risk allele combinations of TCF21 rs12190287 
and APOE rs7412/rs429358, compared with wild-type.
(A) Cumulative Hazard curves. The red line represents patients’
cumulative hazards with the combined risk alleles of TCF21
rs12190287 and APOE rs7412/rs429358 (GC+BB). The blue line is
the cumulative hazards of patients with the combination’s wild-type
(GG+AA).
(B) Cumulative Survival Curves. The red line represents patients’
cumulative survival probability with the combined risk alleles of 
TCF21 rs12190287 and APOE rs7412/rs429358 (GC+BB). The 
blue line is the cumulative survival probability of patients with the 
combination’s wild-type (GG+AA).
Log-rank p values were achieved from the Kaplan–Meier analysis.

Discussion
Coronary artery disease is a complex multifactorial 

condition influenced by multiple genetic risk variants and 
lifetime contact with a hostile environment. Over the last two 
decades, a great effort has been made to recognize the genetic 
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basis of coronary artery disease and other common complex 
cardiovascular diseases and comprehend how DNA variants 
connect with gene function. It has been a slow process due to 
its molecular mechanism complexity, and the benefit of its 
translation into clinical practice has not yet arrived [16-19]. 
To date, 321 loci were significantly associated with CAD in 
the post-GWAS Era; but this number will undoubtedly grow 
due to all the new innovative techniques. It is unclear which 
genes and environmental factors affect CAD risk [20]. 

The present study investigated the gene-gene interaction 
among 32 genetic variants in the susceptibility and prognosis 
of CAD in a Southern European population from the Madeira 
Archipelago. Based on allelic and genotypic inter-correlation 
analyses performed by the MDR method, we considered all the 
genetic interactions and their cumulative effect on the CAD 
risk and impact on the prognosis of patients. Additionally, 
we assessed the interaction between genes and environmental 
risk factors such as smoking, hypertension and dyslipidemia.

The gene-gene analyses with the MDR method disclosed a 
two-fold increased risk for the TCF21 rs12190287 and APOE 
rs7412/rs429358 interaction as the most potent synergy 
between these variants. The principal SNP at chromosome 
6q23.2, rs12190287, is situated in the 3′ untranslated region 
(UTR) of the basic helix-loop-helix transcription factor 
TCF21, a gene that is also a significant expression quantitative 
trait loci (QTL) that define variation in expression levels of 
miRNAs. TCF21 is an expression gene regulator that could 
modulate vascular smooth muscle cell (VSMC) response after 
vascular stress and injury, promoting plaque stability and 
reducing clinical events [21]. Enhancing VSMC phenotypic 
modulation into fibromyocytes protects against CAD, and 
rs12190287 G>C polymorphism has an allelic specificity 
with the risk allele C inducing reduced transcriptional activity 
in contrast with the protective G allele, which increases its 
transcriptional activity. C allele carriers have high CAD risk 
[22]. APOE gene is placed on the long arm of chromosome 
19 and has two non-synonymous SNPs in exon 4, rs429358 
C>T and rs7412 C>T, originating the three main APOE
alleles ε2, ε3, and ε4. The variant rs429358 C>T contains ε3
and ε4 and rs7412C>T ε3 and ε2. These alleles encode the six
major APOE genotypes, three homozygous ε2/ε2, ε3/ε3, ε4/
ε4 and three heterozygous ε3/ε4, ε2/ε4, ε2/ε3.

The ε3/ε3 is considered a wild-type genotype and the 
most frequent. The single amino acid interchange forms 
APOE protein isoforms. Whereas APOE2 takes cysteine at 
positions 112 and 158, APOE3 holds cysteine on residue 112 
and arginine at residue 158, and APOE4 has arginine at both 
[23].  

The exogenous and endogenous channels of lipoprotein 
metabolism rely on APOE, which plays a crucial role in 
reverse cholesterol transport. Excessive cholesterol from 
peripheral tissues is redirected via APOE-containing HDL to 
the liver for elimination [24]. 

Concerning the epistasis analysis, the MDR recognized 
the interaction between the TCF21 rs12190287G>C 
and APOE rs7412/rs429358 as the best model for CAD 
predisposition. These two variants can act synergistically, 
and the subjects carrying the risk genotypic combinations 
will be more susceptible to developing CAD. We can 
speculate that this association could alter the inflammatory 
response and affect the transcriptional efficacy of the genes 
by changing their expression and functionality. In the case 
of TCF21, vascular stress and injury could influence the 
development of adverse VSMC phenotypes contributing to 
plaque instability. Silvia Nuremberg et al. (2015) investigated 
the aortic tissues in APOE-hyperlipidemic mice, identifying 
TCF21 expression in media cells and adventitia of the fibrous 
cap [25]. However, further studies are needed to determine 
how changes in TCF21 gene expression affect the fibrous 
cap’s size and structural design and how such variations are 
associated with specific human diseases connected to plaque 
vulnerability and rupture.  

Regarding the APO ε4 genotype, Jofre-Monseny et al., 
using a murine macrophage cell line stably transfected with 
human APOE4, have recently demonstrated this APOE 
isoform affects macrophage oxidative status and presents 
a modified inflammatory response. Additionally, they 
focused on the impact of this genotype on the activity of the 
transcription factor nuclear factor jB (NF-jB), which is known 
as part of modulating the inflammatory response and may 
contribute to severe CVD [26-28]. In the present work, the 
interaction between the two risk genotypes increased CAD 
susceptibility and changed the prognostic, increasing event 
occurrence. These findings also highlight the complexity of 
CAD as a multifactorial disease with several genetic factors 
and underlying genotype combinations that could modify 
gene function and individual risk. More research is needed to 
clarify these relationships. 

Strengths
Madeira Archipelago has a single public Hospital. 

Therefore, we could obtain the results of all patients avoiding 
missing data during the follow-up.

An important point to highlight is that genetic prediction 
models can raise the perception of individual risk and, 
consequently, the involvement and acceptance of treatment, 
particularly in high-risk subjects. Although genetic factors 
are significant contributors, modifiable risk factors like 
hypertension, smoking and dyslipidemia impact more 
significantly for disease likelihood. Therefore, knowledge 
of the individual risk of CAD might better enhance people’s 
lifestyles, reducing CAD incidence and improving the 
prognosis. As far as I am aware, this is the first work that 
intends to investigate the impact of a genetic association on 
the susceptibility and prognosis of coronary heart disease in a 
Portuguese population.
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Limitations
This study only evaluated the 32 SNPs previously 

described in the GENEMACOR study. Other SNPs could 
potentially create other genetic interactions causing stronger 
susceptibility to CAD. 

Likewise, we must refer, as a study limitation, to the short 
average survey period (5.6±4.5 years) despite an extended 
follow-up (> 15 years). However, with the large sample size 
(1724 subjects), we could obtain a representative number of 
persons with an entire 15-year follow.

Further research studies to discriminate other SNPs 
interactions are required. Lastly, a more complete and 
detailed analysis should be targeted at different populations 
to evaluate the effect of race on this association.

Conclusions
In conclusion, we evaluated the predictive accuracy 

of a genetic model on CAD susceptibility and prognosis. 
According to the present results, the interaction of TCF21 
and APOE risk polymorphisms is associated with a higher 
prevalence of CAD and a worse prognosis. The association of 
these polymorphisms with conventional risk factors (smoking 
habits, hypertension, and dyslipidemia) consistently increased 
CAD risk. 

The study model may be helpful in better diagnosis and 
prognosis of coronary heart disease. However, we conclude 
that although genetic factors are significant contributors, 
modifiable risk factors interaction like hypertension, 
dyslipidemia, and smoking contribute more significantly 
to the likelihood of disease. Nonetheless, assessing the 
gene-gene interaction in CAD risk may increase individual 
participation in adopting healthier lifestyles. With a better 
understanding of the CAD risk pathophysiology and 
personalized information, we could achieve a better prognosis 
by implementing individualized new therapies.
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SUPPLEMENTARY FILES

SNP ID NEAREST GENE ALLELES CHR GENOTYPIC OR (95%CI) P VALUE ALLELIC OR (95%CI) P VALUE MAF (%) PUTATIVE FUNCTION**

rs599839 PSRC1 G>A 1 1.154 (0.817-1.629)# 0.416 1.044 (0.925-1.178) 0.486 21.3 Lipid metabolism

rs2114580 PCSK9 A>G 1 0.943 (0.819-1.086)# 0.415 0.972 (0.869-1.088) 0.623 26.4 Lipid metabolism

rs20455 KIF6 T>C 6 1.167 (0.935-1.457)* 0.172 1.057 (0.952-1.175) 0.299 32.9 Lipid metabolism

rs3798220 LPA T>C 6 1.456 (1.196-1.773)+ <0.0001 2.090 (1.415-3.088) 0.0002  2.0 Lipid metabolism

rs964184 ZNF259 C>G 11 1.109 (0.972-1.265)+ 0.123 1.107 (0.972-1.262) 0.125 17.6 Lipid metabolism

rs7412/
rs4293581 APOE1  ε4 19 1.232 (1.064-1.427)• 0.005 1.232 (1.064-1.427) 0.005 13.4 Lipid metabolism

rs266729 ADIPOQ C>G 3 1.147 (1.020-1.290)• 0.022 1.147 (1.020-1.290) 0.022 23.5 Diabetes/Obesity

rs4402960 IGF2BP2 G>T 3 1.103 (0.867-1.403)* 0.426 0.996 (0.894-1.109) 0.941 30.5 Diabetes/Obesity

rs1801282 PPARG C>G 3 1.149 (0.965-1.369)• 0.118 1.149 (0.965-1.369) 0.118  8.7 Diabetes/Obesity

rs1326634 SLC30A8 T>C 8 1.062 (0.949-1.189)• 0.296 1.062 (0.949-1.189) 0.296 25.9 Diabetes/Obesity

rs7903146 TCF7L2 C>T 10 1.008 (0.874-1.161)# 0.916 1.004 (0.905-1.114) 0.935 35.1 Diabetes/Obesity

rs1376251 TAS2R50 G>A 12 1.202 (0.632-2.283)* 0.574 1.018 (0.874-1.187) 0.817 11.9 Diabetes/Obesity

rs8050136 FTO C>A 16 1.176 (1.017-1.361)# 0.028 1.119 (1.011-1.238) 0.030 39.7 Diabetes/Obesity

rs17782313 MC4R T>C 18 1.366 (0.987-1.891)* 0.059 1.072 (0.950-1.209) 0.258 21.7 Diabetes/Obesity

rs1884613 HNF4A C>G 20 0.880 (0.755-1.026)* 0.102 0.922 (0.806-1.055) 0.238 16.2 Diabetes/Obesity

rs699 AGT T>C 1 1.060 (0.913-1.230)* 0.442 1.013 (0.917-1.120) 0.798 42.7 Hypertension

rs5186 AGT1R A>C 3 1.077 (0.959-1.209)+ 0.209 1.076 (0.959-1.206) 0.213 24.9 Hypertension

rs4340 ACE  I>D 17 1.157 (1.001-1.338)* 0.048 1.075 (0.971-1.190) 0.164 38.4 Hypertension

rs1801131 MTHFR A>C 1 1.079 (0.938-1.242)* 0.285 1.060 (0.950-1.183) 0.301 28.3 Oxidative status

rs1801133 MTHFR C>T 1 1.206 (1.048-1.389)# 0.009 1.137 (1.023-1.263) 0.017 33.5 Oxidative status

rs6922269 MTHFD1L G>A 6 1.057 (0.808-1.383)* 0.686 0.992 (0.887-1.108) 0.885 27.3 Oxidative status

rs705379 PON1 C>T 7 1.058 (0.895-1.251)# 0.507 1.034 (0.936-1.142) 0.509 46.9 Oxidative status

rs662 PON1 A>G 7 1.152 (0.907-1.462)# 0.246 1.064 (0.955-1.186) 0.259 29.9 Oxidative status

rs854560 PON1 T>A 7 1.138 (1.028-1.259)• 0.012 1.138 (1.028-1.259) 0.012 40.7 Oxidative status

rs17465637 MIA3 A>C 1 1.070 (0.959-1.193)• 0.226 1.070 (0.959-1.193) 0.226 28.9 Extra Cellular Matrix

rs618675 GJA4 T>C 1 1.128 (0.790-1.610)* 0.508 1.039 (0.917-1.177) 0.548 19.6 Inter Cellular Connection

rs12190287 TCF21 G>C 6 1.203 (1.082-1.338)+ 0.001 1.200 (1.080-1.333) 0.001 32.9 VSMC remodelling

rs1332844 PHACTR1 C>T 6 1.193 (1.025-1.389)* 0.022 1.122 (1.016-1.239) 0.024 44.4 Calcification/inflamation

rs11556924 ZC3HC1 T>C 7 1.139 (1.025-1.265)+ 0.015 1.137 (1.024-1.262) 0.016 34.2 Mitose proliferation

rs1333049 CDKN2B-AS1 G>C 9 1.134 (1.026-1.252)• 0.013 1.133 (1.026-1.252) 0.013 45.6 Vascular remodelling

rs4977574 CDKN2B-AS1 A>G 9 1.152 (1.042-1.274)• 0.006 1.152 (1.042-1.274) 0.006 41.8 Vascular remodelling

rs17228212 SMAD3 T>C 15 1.099 (0.824-1.467)* 0.519 0.998 (0.891-1.119) 0.977 25.3 Cell growth/
differentiation

rs3825807 ADAMTS7 A>G 15 1.070 (0.968-1.183)• 0.188 1.070 (0.968-1.183) 0.188 41.3 Vascular remodelling

Supplementary Table (S1)
S1 - Genetic variants associated with CAD susceptibility in the GENEMACOR population (n=3139)

SNP – Single Nucleotide Polymorphism; Chr – Chromosome; OR – Odds Ratio; CI – Confidence Interval; MAF – Minor Allele 
Frequency;+Additive model;*Recessive model; #Dominant model; •Allelic model; 1Resulting from a Haplotype.  ORs are given for additive, 
recessive, allelic or dominant models according to the most significant The potential mechanism of action is based on what is already known 
about the function of the nearby genes, including Lipid metabolism, Diabetes/Obesity, Hypertension, Oxidation (genes involved in pro-
oxidative status) and Cellular (genes associated with cell cycle, cellular migration, vascular remodelling and inflammation).  **, Erdmann J, 
Kessler T, Munoz Venegas L, Schunkert H. A decade of genome-wide association studies for coronary artery disease: the challenges ahead. 
Cardiovasc Res 2018;114:1241–57 (29).
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