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Abstract
The most prevalent neurodegenerative diseases are Alzheimer’s 

disease (AD) and Parkinson’s disease (PD). Both AD and PD are classified 
as proteinopathies where misfolded amyloid-β, and tau proteins in AD 
and α-synuclein in PD are noticed.  The main AD hallmarks are memory 
loss where the loss of dopaminergic neurons and the development of 
Lewy-bodies are found in PD. The defects in the motor neuron activities, 
however, can be noticed after the loss of dopaminergic neurons by  
50-70% in the Substantia nigra (SN) region.  Emerging Evidences are there 
to suggest that misfolded protein tangles and/or plaques have prion-like
proteins which are the major factor causing the pathogenesis. Additional
factors that can affect pathology of theses diseases include oxidative stress,
mitochondrial damage, inflammation, and age-related cell death. Chronic
inflammation is also universally thought to play a central role in the
initiation and progression of PD.

At present no such real therapies are yet available for the cure of AD 
and PD, besides some palliative treatment. However, efforts are in the 
process to find some effective therapies using transplantable neural cells, 
gene therapies, and some nanomaterials, for better targeting across the 
blood-brain barrier. Nanomaterials, further can increase the drug half-lives, 
protect cargo from immune detection, and provide a physical structure that 
can support cell growth.
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Angiotensin-converting enzyme 2 (ACE2)

Alzheimer’s disease (AD) 
Aminopeptidase N (APN)
Amyloid-β (Aβ)
Blood brain barrier (BBB)
Brain-derived neurotrophic factor (BDNF)
Central nervous system (CNS)
Dopaminergic (DA-ergic)
Glial cell derived neural factor (GDNF)
Human coronavirus 229E (hCoV-229E)
Interleukin-1β (IL-1β)
Inducible nitric oxide synthase (iNOS)
Lewy bodies (LB)
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growth, axonal extension and to repair the damaged cell in 
both the diseases using some neurotropic factors like BDNF, 
GDNF.  Nanomaterials like scaffolds, PLGA are thoughts 
to be used not only for targeted delivery of the neurotropic 
factors but also to increase their half-life and to improve the 
motor function and dopaminergic neuron restoration without 
showing any toxic effects in vivo [27-29].

Further, maturation of neurons can be done, in vitro, 
by using scaffolds pretreated with RGD and heparin before 
administration to an in vivo system [30].  In this regards, 
various scaffolds are being made using alternating amino acid 
sequences, which support neuronal growth and differentiation 
[31, 32].  Humanin peptide, which is known to inhibit Aβ–
related cell death in AD can be delivered successfully with 
polymersomes (PEG-PLGA) [33].

Cell Therapy: Cell therapy of PD by transplantation 
of stem cells has been proposed earlier. However, there are 
enough demerits in that approach, like availability of enough 
cells for transplantation, probability of future development of 
carcinoma, and so many other logistic challenges including 
the cost of the treatment.  

Neural Stem cells (NSCs) have been considered as 
the preferred cells for transplantation as those can produce 
dopamine, the active principle for PD/AD treatment [34-
36].  Besides the production od Dopamine, NSCs posses the 
ability to control the level dopamine in the synaptic cleft as it 
contains the Dopamine catabolizing enzymes, and as a result 
offers a less probability of having future neural tube defects 
that can result from the excess unused floating dopamine in 
the Substantia Nigra (SN region). Further, NSCs can also be 
used as a vehicle for delivering other neuron co-stimulatory 
drugs, and/or chemotherapeutic agents.  In fact, NSCs have 
been found to deliver neurotrophic factors to the CNS and 
promote neuron integrity and regeneration [37-40].

Macrophages, another possible therapeutic cells 
against PD/AD: PD is believed to be the result of chronic 
inflammation [41, 42]. MΦs, the main regulatory immune 
cells that acts in the periphery have the ability to polarize 
either to its M1 type or to M2 type under the influence of 
environmental factors [43].  M1 type of MΦs while is pro-
inflammatory, and releases several chemokines, such as 
interleukin-1β (IL-1β), tumor necrosis factor-α (TNF- α), 
and monocyte chemotactic protein-1 (MCP-1), and iNOS, 
the M2- MΦs produce anti-inflammatory cytokines, like 
IL- 10, IL-4, IL-13, and promote tissue repair [44-47]. 
During the inflammatory disease progression, M2-MΦs are 
gradually replaced by M1-type [48]. With the similar note 
it is believed that somehow in the brain MΦs are polarizes 
to M1-type during the pathogenesis of PD. In fact, MΦs 
and neutrophils are able to cross the blood brain barrier, and 
secrete proinflammatory cytokines (e.g, ILs, TNFα, IFN-γ), 
which can cause the development of PD development [49]. 

Macrophages (Ms)
Monocyte chemotactic protein-1 (MCP-1)
Neural Stem cells (NSCs)
Parkinson’s disease (PD)
Polyethylene glycol (PEG)
Poly (lactic-co-glycolic acid) (PLGA)
Arg-Gly-Asp (RGD)
Reactive oxygen species (ROS)
Substantia nigra (SN)
α-Synuclein (α-syn)
Severe Acute Respiratory Syndrome (SARS)
Tumor necrosis factor-α (TNF- α)

Introduction
Protein aggregation is a typical phenomenon in both 

Parkinson’s disease (PD) and Alzheimer’s disease (AD). 
In particular, PD is characterized by the deposition of 
aggregated misfolded α-synuclein (α-syn) protein, which is 
known as Lewy bodies (LB) in dopaminergic neurons, and 
thus causes severe motor dysfunction [1]. On the other hand, 
AD where the cognitive process is typically lost is diagnosed 
with the abnormal accumulation of amyloid-β (Aβ) plaque 
and tau neurofibrillary tangles in the brain [2].  Supporting 
evidences are there to clarify the proteinopathy due to the 
accumulation of pathological α-syn, Aβ, and tau that spreads 
from cell-to-cell [3-12]. The α-syn aggregates localize in 
the mitochondria and induces mitochondrial fragmentation 
and decreased membrane potential [13-15].  In AD, the 
aggregation of Aβ peptide results from the oxidative stress 
from dysfunctional mitochondrial reactive oxygen species 
(ROS) [16-18]. Further, abnormal hyper-phosphorylation 
of microtubule-associated tau protein leads to the formation 
of tau tangles with prion-like activity. In both the diseases, 
AD and PD, expression of inflammatory cytokines have 
been noticed which may cause the protein aggregation and 
cell death. However, inhibition of amyloidosis in both AD or 
PD with small molecules and antibodies exhibit only a little 
success [19-21].

Traditional therapeutic drugs usually have off-target 
effects. Nanomaterial formulations can ensure targeted 
delivery and also can overcome the blood brain barrier 
(BBB) during delivery of the actives [22-25]. Additionally, 
composite nanomaterials can be developed to ensure the new 
cell growth in PD and AD [26]. In this review, we will explore 
the current field of nanomaterials for therapeutic application 
of cell-based therapies in PD and AD.

Present Treatment Strategy
Except some palliative treatment, like using Dopa/

Dopamin, currently, there is no curative therapy for PD or AD. 
However, efforts are in progress to regenerate the neuronal 
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Use of Nanotechnology for Targeted Tissue Delivery: 
As an extension of the targeted cell therapy, the use of 

nanovehicles to carry NSCs along with the neurotropic 
factors across the Blood-Brian Barrier (BBB) have been 
proposed [50-53]. 

• Liposomes: Liposomes are capable to encapsulate both
the hydrophobic and hydrophilic drugs into its hollow
core and deliver them to the disease sites [54-56]. Long-
circulating liposomes, like PEGylated liposomes, can
also be prepared by coating with polyethylenglycol [58].
In clinical trials with the treatment of histoplasmosis,
meningitis, and neutropenia, PEGylated liposomes
showed better efficacy with less side effects [59].

• Polymeric Micelles: Amphilic polymeric micelles are
made up of PEG--PCL), poly(styrene) or PLGA [60].
These type of block copolymers are, indeed, approved
by FDA for the targeted drug delivery [60]. In that
hydrophilic shell, hydrophobic drugs can stay protected
from the surrounding environment. By designing the cell-
specific ligands and attached to the polymer can make the
polymer to be directed towards the specific cell types [61].

• Nanoviricide®: It is comprised of a polyethylene glycol
(PEG) and alkyl pendants. The alkyl chains while make
a flexible core the PEG forms the hydrophilic shell and
imparts non-immunogenicity. The resulting polymeric
materials form stable micelles with chemical groups that
are uniformly distributed along the polymer chain. This
polymeric chain attaches with the virus-specific ligands
like chemical moieties, peptides, antibody fragments
or other proteins (Fig. 1).  Recently, NV-CoV-2, a
biopolymer designed and made by Nanoviricide® (Shelton,
CT) are potentially active against many viruses including
Corona virus [62].  In the antiviral therapy of corona
virus, NV-CoV-2 is covalently bonded with antiviral
small chemical ligands similar to S-protein which binds
to the cognate cellular receptor, ACE2. NV-CoV-2 also
can bind the other SARS receptor, Aminopeptidase N
(APN), and showed inhibitory activities against the the
human coronavirus 229E (hCoV-229E) which uses APN
receptor for binding to the cell.[62].

Conclusions and Future Perspectives
The treatment of PD is still controversial as there is no 

defined diagnostic tool for the early detection of the disease 
and also their pathological pathway. Pharmacological 
therapy, in fact actually starts when the patient notices 
the difficult motor activities, and at that point 50–70% of 
dopaminergic neurons actually have already been lost which 
makes it practically impossible to cure [62]. Current therapies 
are mainly focusing on palliative treatment and/or slowing 
down and reversing the abnormal motor symptoms. 

Figure 1A: Key Players for AD Pathogenesis

Figure 1B: Key players of PD

Figure 2: Schematic Design of Nanoviricide Biopolymer
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Several studies have demonstrated that nanosystems 
could potentiate sustained release of the repurposed PD drugs 
with no side-effects, and increase the effectiveness of the 
therapeutic agents.  Moreover, they can be used for effective 
delivery to the target across the BBB.  Great efforts are still 
in the process to develop new effective PD therapeutics, 
like salfinamide and opicapone which may decrease motor 
fluctuations [63-66], αsyn target therapies [67], and neural 
stem cell transplantation therapies, and gene therapy [68]. 
Our Plan of Action is to create a Novel Therapeutic Module 
for PD and AD. Accumulation of M1 type of macrophages in 
the brain is the key player of PD onset [69].  Repolarization 
to its M2-type by cytokines, nanoparticles or both could be 
the effective components the strategy that could be deployed 
for PD therapy (Fig. 2). The DA-ergic NSC cells while 
will replenish the loss of neural cells the anti-inflammatory 
cytokines can also be the used as a vehicle of the M2 polarizing 
cytokines (IFNγ-GMCSF, IL-10, IL-4, TGF-β, IL-12, etc.) 
to re-educate M1 type to M2 type.  Thus, in combination, 
therapeutic benefits could be achieved for the PD victims.
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