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Abstract 

Random forest (RF) captures complex feature patterns that 

differentiate groups of samples and is rapidly being adopted 

in microbiome studies. However, a major challenge is the 

high dimensionality of microbiome datasets. They include 

thousands of species or molecular functions of particular 

biological interest. This high dimensionality significantly 

reduces the power of random forest approaches for 

identifying true differences and functional characterization. 

The widely used Boruta algorithm iteratively removes 

features that are proved by a statistical test to be less 

relevant than random probes. We developed a massively 

parallel forward variable selection algorithm and coupled it 

with the RF classifier to maximize the predictive 

performance. The forward variable selection algorithm adds 

new variable to a set of selected variables as far as the 

prespecified criterion of predictive power is improved. At 

each step, the parameters of random forest are optimized. 

We demonstrated the performance of the proposed 

approach, which we named RF-FVS, by analyzing two 

published datasets from large-scale case-control studies: (i) 

16S rRNA gene amplicon data for Clostridioides Difficile 

Infection (CDI) and (ii) shotgun metagenomics data for 

human colorectal cancer (CRC). The RF-FVS approach 

further screened the variables that the Boruta algorithm left 
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and improved the accuracy of the random forest classifier 

from 81% to 99.01% for CDI and from 75.14% to 90.17% 

for CRC. Valid variable selection is essential for the 

analysis of high-dimensional microbiota data. By adopting 

the Boruta algorithm for pre-screening of the variables, our 

proposed RF-FVS approach improves the accuracy of 

random forest significantly with minimum increase of 

computational burden. The procedure can be used to 

identify the functional profiles that differentiate samples 

between different conditions. 

 

1. Introduction 

A microbiome is the full collection of genes of all microbes 

in a community; for example, all bacteria in a sample from 

the gut of a healthy individual or from an individual with a 

disease. Identifying difference of microbiome compositions 

between two or more groups is one of the most important 

purposes of microbiome studies [1, 2]. High-throughput 

sequencing technologies have allowed the microbiome 

composition and function in different environments to be 

quantified correctly [3, 4]. Several marker identification 

methods have been developed for applications in 

microbiome studies. The standard statistical approaches, 

such as Kruskal-Wallis (KW) test with the Benjamini–

Hochberg False Discovery Rate (FDR) correction [5] or 

blocked (univariate) Wilcoxon tests [6], measure taxon 

relative abundances, analyze within- and between-sample 

diversity (α and β diversity, respectively), and perform 

classical hypothesis testing. Machine learning technology 

has been applied in microbiome studies, especially for 

predicting specific diseases and supporting medical 

diagnosis [7, 8]. Because Random Forest (RF) captures the 

complex feature patterns that differentiate groups of 

samples [9, 10], it is rapidly being adopted for the analysis 

of microbiome data. The RF algorithm is a modification of 

bagging that aggregates a large collection of decision trees 

[11]. A main step in building an ensemble of decision trees 

is to perform random sampling of the available features to 

generate different subspaces of features at each node of 

each unpruned decision tree. This strategy can produce 

better estimation performances than a single decision tree 

because each tree estimator has low bias but high variance, 

whereas a bias-variance trade-off is achieved by the 

bagging process of RFs. RF methods have been applied 

successfully to genetic and microbiome data [12-14]. It is 

anticipated that RF methods and implemented importance 

measures will help in the identification of microbiome 

species that can be used to distinguish diseased and non-

diseased samples. Identifying a core set of the most 

significant microbial species is of high interest, not only for 

diagnosis of certain diseases but also to gain valuable 

insights into the biological functionality and mechanisms of 

these species.  

 

However, the performance and diversity of decision trees in 

the ensemble significantly influence the performance of RF 

algorithms. The generalization error for RFs involves 

measures of how accurate the individual classifiers are and 

their interdependence. Therefore, the high dimensionality 

problems of microbiome datasets pose a number of 

challenges. For example, microbiome datasets tend to 

contain a large number of microbiome species whose 

functions may not be related to the disease of interest. 

Common random sampling methods may select a sizeable 

number of subspaces that do not include the informative 

microbiome species and functions. As a consequence, the 

decision trees generated from these subspaces will have 

reduced average strength, thereby increasing the error 

bounds for the RF algorithm. A number of different 
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approaches have been proposed to identify important 

variables that could improve the performance of RF 

algorithms. For example, the Boruta algorithm [15] was 

proposed to identify a set of relevant features using an RF 

classification algorithm that iteratively removes the 

variables using a statistical test. These relevant features are 

different from the objective of relevant and also non-

redundant feature subsets. Moreover, a standard 

permutation test [16] was proposed to estimate the 

distribution of measured importance values of the RF 

algorithm for each predictor variable by repeatedly 

permuting the variable and randomly shuffling the data 

values so that the original association between the response 

and predictor variables was destroyed. A high value of the 

permutation importance of the predictor variable indicates 

high significant association to the response. However, the 

sizes of the selected subsets of features are still large in the 

high-dimensional microbiome database, the power of RF 

algorithm is not significantly improved, and it is difficult to 

interpret the selected features. 

 

Although a number of different algorithms and tools have 

been developed for microbiome analysis [7], effective 

approaches require a lot of possible combinations of 

variables, which exponentially increases the computational 

burden as the number of involved features increases. Even 

though a small number of machine learning methods, 

including the RF algorithm, can be easily parallelized, 

building prediction models for thousands of microbiome 

species and functions can be very time consuming. 

In this study, we propose a novel procedure that tackles the 

challenges described above. The core of our procedure is an 

RF classifier coupled with forward variable selection (RF-

FVS), which selects a minimal-size core set of microbial 

species or functional signatures to maximize the predictive 

performance of the RF classifier. To reduce the 

computational cost, we designed a parallelized algorithm 

and integrated a prescreen algorithm. To examine the 

performance of the RF-FVS approach, we analyzed two 

empirical datasets from large-scale case control studies. 

One is a published case-control 16S rRNA gene amplicon 

sequencing gut microbiome dataset with 3347 Operational 

Taxonomic Units (OTUs) for Clostridioides groups: 89 

individuals with CDI (cases), 89 with diarrhea who tested 

negative for CDI (diarrheal controls), and 155 non-diarrheal 

controls. The other is a fecal shotgun metagenomic dataset 

[18] that included 290 samples from tumor-free. Controls 

and 285 samples from individuals with Colorectal Cancer 

(CRC). The RF-FVS serves as the basis for the integrated 

analysis of microbiome data, detecting significant species in 

a phylogenetic tree [19] and predicting functional 

capabilities of microbial communities based on 16S rRNA 

datasets [20]. To estimate the dependence of the pipeline on 

the quality of the microbiome functional profile data, we 

analyzed the predicted functional profiles obtained from the 

16S rRNA dataset, which were approximately 85% 

accurate, and the functional profiles obtained from the 

shotgun metagenomic dataset. We found that our RF-FVS 

performed well even for the predicted functional profile 

data. 
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Figure 1: Massively parallel forward variable selection algorithm for the Random Forest (RF) classifier. The number of queues 

depends on the number of CPU cores available in the computer system. 

 

2. Materials and Methods 

2.1 Forward variable selection for random forests 

The RF approach is an ensemble method that combines a 

large number of individual binary decision trees. Two main 

randomization procedures have been implemented to reduce 

variance of individual decision trees, deliver diversity 

amongst decision trees, and thus improve prediction 

accuracy. First, randomly selected training samples for each 

of the individual trees are applied to construct sufficiently 

diverse trees. Second, at each node within a tree, a set of 

randomly chosen candidate predictor variables is identified 

for the split. However, random feature subspace sampling 

may not be a good strategy to deal with high-dimensional 

data because a large proportion of the features may not be 

informative of the class of an object in the high-dimensional 

data. If a random sampling strategy is implemented to select 

the subset of eligible features at each node, almost all the 

subsets are likely to contain a large number of non-

informative features. For example, the 16S rRNA gene 

amplicon data for CDI [17] that we used to evaluate the 

performance of our proposed approach contained a total of 

3347 microbiome species, but only 96 of the species were 

informative. Therefore, if a subset of species, which is 

usually the square root of the total number of species, is 

selected by resampling randomly at any node within the 
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decision tree, the mean number of informative species 

selected at each node will be two. Therefore, individual 

decision trees built using such nodes will have low accuracy 

and the performance of the RF algorithm will suffer. In our 

approach, we used forward variable selection to identify a 

small number of informative variables to improve the 

performance of individual decision trees in an ensemble. 

 

A key idea behind our algorithm was to divide the total 

number of variables into two groups, a remaining variables 

group and a selected variables group. We started with an 

empty group for the selected variables. At each step, a 

variable from the remaining variables group was added to 

the selected variables group such that the specified criterion 

was improved (i.e., area under the Receiver Operating 

Characteristic [ROC] curve [AUC], a weighted average of 

the precision and recall [F1 score] or predictive accuracy). 

Model selection for microbial signature identification also 

can be performed using our RF- FVS algorithm. At each 

forward iteration, given the selected variables, the 

randomized parameter optimization algorithm for RF 

implements a randomized search over parameters, where 

each setting is sampled from a distribution over possible 

parameter values. Thus, the best RF model is specified by 

these selected variables. Moreover, a high-speed 

computational strategy based on multi-processing 

architecture was developed to parallelize the forward 

variable selection algorithm at the single machine level and 

thus significantly reduce runtimes. Another key idea behind 

our algorithm was to create many subsets of variables, so 

that each subset had one of the variables from the remaining 

variables group added to the selected variables group. 

Because of the high dimensionality problems of 

microbiome data, the number of these subsets is usually 

significantly larger than the number of processors in a 

single computer system. Our solution was to create queues 

so that subsets are assigned randomly and each processor 

runs the computational processes from its own privately 

prepared queue. (Figure 1) shows how all computational 

burdens for searching important feature relevance are 

appropriately decomposed, so that they can be computed in 

a parallel environment. The RF model with the highest 

accuracy value for each subset of features is selected by a 

specific processor. Processors in symmetric multiprocessing 

communicate with each other through shared memory 

architecture to decide only the best feature among multiple 

candidates that should be added to the selected features. The 

algorithm stops when there are no additional variables that 

improve the current optimization parameters or when the 

maximum number of components to be included in the 

group of selected variables is achieved. The main 

parameters of the RF classifier that were optimized in our 

algorithm, were number of trees in the forest, maximum 

depth of the tree, minimum number of samples required to 

split an internal node, minimum number of samples 

required to be at a leaf node, and number of features to 

consider when looking for the best split. 

 

2.2 Functional gene enrichment analysis 

Functional profiles were predicted from the 16S rRNA gene 

data for CDI using Tax4Fun. which was developed to 

analyze the enrichment of functional genes of microbiomes 

[20, 21]. The output from the QIIME software application 

with a SILVA database extension (SILVA 119) [22] was 

used to pre-process raw data for Tax4Fun. Tax4Fun 

transforms the SILVA-based Operational Taxonomic Units 

(OTUs) into a taxonomic profile of KEGG organisms that is 

normalized by the 16S rRNA copy number (obtained from 

the NCBI genome annotations) [23]. The result is a table 

containing relative KEGG Ortholog (KO) abundance levels. 



 

J Cancer Sci Clin Ther 2022; 6 (1): 87-105                           DOI: 10.26502/jcsct.5079147 

 

 

Journal of Cancer Science and Clinical Therapeutics    92  

 

2.3 Phylogenetic transformation of micro biota data 

for random forest 

Most studies of microbiomes analyze the relative 

abundance of bacterial taxa to make measurements 

comparable across samples [24]. However, the relative 

nature of microbial abundance data in microbiota studies 

can lead to spurious statistical analyses. To avoid spurious 

statistical analyses because of the relative nature of 

microbial abundance data in microbiota studies, we used the 

Phylogenetic Isometric Log-Ratio (PhILR) transformation 

[19]. The main idea behind the PhILR transformation is to 

consider the bacterial phylogenetic tree as a natural and 

informative sequential binary partition to construct an 

isometric log-ratio that converts compositional data into a 

real Euclidean space. This phylogenetically driven 

isometric log-ratio transformation can help to capture the 

hierarchical pattern of a microbial community structure. 

 

2.4 Pre-screening algorithm for random forest coupled 

with forward variable selection 

We used the Boruta algorithm [15] as a relevant embedded 

feature selection algorithm that uses the RF classifier to 

detect all strongly and weakly relevant OTUs (or 

phylogenetic internal nodes, or functional profiles) to 

reduce the considerable data dimensionality. This improved 

the classification accuracies and significantly decreased the 

time computation. The main idea of this algorithm was to 

duplicate each OTU, thus creating “shadow” OTUs by 

randomly permuting the observations of duplicated OTUs at 

the first step. Then, the importance of all the OTUs is 

computed (calculated as Z-scores) and the maximum Z-

score among the shadow bands is identified when the RF 

classifier is run. The number of times that the importance of 

an OTU is higher than the maximum Z-score among the 

shadow OTUs is counted. An OTU is deemed “important” 

when the frequency is significantly higher than the expected 

value, otherwise the OTU is deemed “unimportant” and 

removed. The global framework of our new approach is 

shown in (Figure S12). 

 

2.5 Two types of empirical datasets 

To examine the performance of our RF-FVS approach, we 

analyzed two types of empirical datasets from large-scale 

case control studies as follows. 

 

2.5.1. 16S rRNA gene amplicon dataset 

We collected a published case-control 16S rRNA gene 

amplicon sequencing gut microbiome dataset that included 

disease meta data and sequencing data with 3347 OTUs for 

Clostridioides difficile infection (CDI) [17] from 338 

individuals; 89 with CDI (cases), 89 with diarrhea who 

tested negative for CDI (diarrheal controls), and 155 non-

diarrheal controls. 

 

2.5.2. Shotgun metagenomics dataset  

We collected a published fecal shotgun metagenomic 

dataset [18] that included 290 samples from tumor-free 

controls and 285 samples from individuals with CRC. 

Unlike the 16S rRNA gene amplicon data, shotgun 

metagenomics provide insight into both microbial 

community structure and the functions encoded by genomes 

of the microbiota. For example, the thousands of new 

protein families that represent novel functions specific to 

given environments [25], and taxa and the precise 

dysfunctions of microbial metabolism in gastrointestinal 

microbiome associated healthy and diseased humans [26] 

are identified by the full analysis of metagenomic 

databases. 
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Figure 2: Performance of the random forest classifier for 16S rRNA gene amplicon data from the Clostridioides difficile 

infection (CDI) dataset. (a) Accuracy of random forest classifier with different variable selection methods for the 16S rRNA 

gene amplicon dataset. (b) ROC and AUC of random forest classifier for the 16S rRNA gene amplicon dataset; RF: Random 

forest algorithm, RF-PI: Random forest algorithm with permutation importance algorithm, RF-BR: Random forest algorithm 

with Boruta algorithm, RF-FVS: Random forest algorithm with forward variable selection algorithm. 

 

2.6 Software implementation 

The RF-FVS framework includes two core modules. First 

of all, the random forest classifier, permutation importance 

algorithm, Boruta algorithm and forward variable selection 

algorithm are implemented by Python programming 

language in order to optimize the parallel computations that 

could reduce significantly the computation time. A Python 

library Scikit-learn is used to implement core computational 

techniques for the random forest classifier [27]. Secondly, 

the phylogenetic analysis and visualizations are 

implemented by using some R packages. For example, the 

phylogenetic isometric log ratio transformation is 

implemented in the package philr [19], functional 

microbiome analysis is implemented in package Tax4Fun2 

[21] and phylogenetic visualization is implemented in 

package ape [28]. Besides, if the phylogenetic tree is not 

available, the standard phylogenetic analysis methods will 

be introduced for users such as MEGA [29], RAxML [30] 

and IQ-TREE [31] in order to build the phylogenetic tree. 

 

3 Results 

3.1 Improved accuracy for relative OTU abundance 

data from the 16S rRNA gene amplicon dataset 

We compared the predictive power of our RF-FVS 

approach to classify three groups (CDI case, diarrheal 

control, non-diarrheal control) between the micro biome 

data and the clinical data. The clinical data included age, 

sex, ethnicity, antibiotic use, antacid use, a vegetarian diet, 
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surgery within the past 6 months, a history of CDI, 

residence with another person who had CDI, and residence 

with another person who works in health care. The clinical 

data were 51% accurate (AUC = 0.7), whereas the 

microbiome data were 81% accurate (AUC = 0.95) (Figure 

S1). In particular, the accuracy was high for the microbiome 

data of the non-diarrheal control group. Moreover, when 

treating the composition of the microbiota data by 

Phylogenetic Isometric Log-Ratio (PhILR) transformation, 

we found that the RF classifier achieved high accuracy 

(85%; AUC = 0.95). However, it was still difficult to 

distinguish CDI cases and diarrheal controls in both the 

microbiome and phylogenetic transformation data. Overall, 

the accuracy of diagnosis was significantly improved with 

the RF-FVS approach for the CDI and diarrheal control 

groups for the microbiome data compared with the accuracy 

with the RF-PI and RF-BR algorithms (Figure 2). By 

focusing on 119 species, the accuracy of the RF classifier 

increased to 96% (AUC = 0.99) (Figure S1). CDI Cases 

were identified with an accuracy of 94% (AUC = 0.94) and 

diarrheal controls were identified with an accuracy of 93% 

(AUC = 0.97). For the phylogenetic transformation data, the 

accuracy was 95% (AUC = 0.97) when the FVS approach 

detected the 36 phylogenetic internal nodes. 

 

 

Figure 3: Phylogenetic tree of the 16S rRNA microbiota (OTU) data from the CDI dataset. 
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(a)Positions indicate the 119 important microbial species that remained after forward variable selection. (b)Positions indicate 

about 1000 important microbial species that remained after applying the Boruta algorithm. (c)Positions indicate about 2000 

important microbial species that remained after applying the permutation importance algorithm. Red indicates OTUs associated 

with CDI cases; blue indicates OTUs associated with the non-diarrheal controls; green indicates group A; orange indicates 

group B; purple indicates group C. 

 

3.2 Mapping the selected species on the 16S rRNA 

phylogenetic tree 

The forward variable selection approach avoided the sparse 

problems in selection of microbial species that the Boruta 

and permutation importance algorithms could not overcome 

(Figure 3). Therefore, the number of selected species was 

significantly smaller than the numbers with the other 

methods, and the performance of the RF algorithm was 

improved and easier to interpret. The 119 selected OTUs 

from nine families were clustered in the 16S rRNA tree: 

Peptostreptococcaceae, Verrucomicrobiaceae, 

Veillonellaceae, Ruminococcaceae, Lachnospiraceae, 

Bacteroides, Porphyromonadaceae, Lactobacillaceae, and 

Enterobacteriaceae (Figure 3a). They formed three main 

groups of species that were associated with the 

differentiation of CDI cases from the non-diarrheal controls. 

The species in group B in Figure 3a (such as denovo 54, 

1326, 601, 2346, and 3486) that showed strong positive 

correlations with CDI cases belonged to a diverse number 

of families (Figure S2 and Table S1) such as 

Peptostreptococcaceae [32], Lactobacillaceae (including 

Lactobacillus genus), Enterococcaceae (including 

Enterococcus genus) [33, 34], Verrucomicrobiaceae, and 

Veillonellaceae [35]. For example, Pérez-Cobas et al. [36] 

reported that the most striking changes in the microbiome 

of CDI cases occurred in the Lactobacillaceae family, 

whose frequency increased from <1% at the beginning of 

antibiotic treatment to 83.3% and 70% on days 35 and 38 of 

an antibiotic course, then reduced to 15.5% after antibiotic 

therapy. The species in group B that were selected by the 

Boruta and permutation importance algorithms, were 

similar to those selected using the forward variable 

selection approach (Figure 3b and 3c).  

 

Most of the species in group C (such as denovo 127, 1399, 

and 788) that showed positive correlations with CDI cases 

belonged to the Enterobacteriaceae family (Figure 3a and 

Table S1). Studies [37-39] have shown that relative 

overgrowth of members of the Enterobacteriaceae family 

was one of the main causes of significantly disturbed 

microbiota in CDI. Thus, C. difficile colonization may be 

facilitated by increased endotoxin production with increased 

intestinal permeability. However, in group C, the Boruta 

and permutation importance algorithms selected more 

species associated with CDI than the forward variable 

selection approach (Figure 3b and 3c) because these two 

algorithms used the decrease of Gini impurity after a node 

split as the main input data for computational processes in 

order to select the main features. The corresponding species 

that became the potential candidates of these two algorithms 

showed large decreases of impurity after certain split. The 

reduction of impurity of species became very slow and the 

differences of impurity between species in the same 

families were insignificant in the high-dimensional sparse 

microbial data (Figure S3 and Table S1).  

 

Therefore, the abilities of the Boruta and permutation 

importance algorithms were influenced significantly even if 
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the statistical tests were used. For example, in group C, the 

FVS algorithm selected a few species in Lachnospiraceae 

family that had positively associated OTUs (Figure 3a), but 

the other algorithms kept a large number of the species in 

this family that showed poor positive correlations with CDI 

cases (Figure 3b, 3c and Table S2). In groups B and C, a 

large number of species in the Lachnospiraceae family that 

were kept by the Boruta algorithm, were associated with 

non-diarrheal controls (Figure 3b) but showed poor 

correlations with non-diarrheal controls (Table S2). 

Besides, a number of species in the Ruminococcaceae 

family that were selected only by the Boruta and 

permutation importance algorithms, showed poor positive 

correlations with non-diarrheal controls (Figure 3b, 3c and 

Table S3). 

 

 

 

Figure 4: Performance of the random forest classifier for the shotgun metagenomics data of colorectal cancer (CRC) dataset. 

 

(a) Accuracy of random forest classifier with the different variable selection methods for the shotgun metagenomics dataset; 

(b) ROC and AUC of random forest classifier for the shotgun metagenomics dataset. RF: Random forest algorithm, RF-PI: 

Random forest algorithm with permutation importance algorithm, RF-BR: Random forest algorithm with Boruta algorithm, 

RF-FVS: Random forest algorithm with forward variable selection algorithm. 

 

Most species in group A (such as denovo 557, 302, 1888, 

1987, 1983, and 610), some species in group C (such as 

denovo 26, 9, 1295, 447, and 347) and one species in group 

B (denovo 156) that were enriched in the non-diarrheal 

controls belonged to the Ruminococcaceae, 

Lachnospiraceae, Bacteroides, and Porphyromonadaceae 

families (Figure 3a, Figure S2 and Table S1). Short-Chain 

Fatty Acid (SCFA) production is known to play a principal 
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role in the regulation of intestinal inflammatory processes 

[40] and intestinal barrier maintenance [41]. CDI was found 

to cause significant reductions in the Ruminococcaceae 

and/or Lachnospiraceae families that produce butyrate and 

SCFA [42, 43]. Moreover, the four species in group A 

(denovo 2019, 1773, 3205, and 2528) (Figure 3a and Table 

S1) showed weak associations with CDI case. However, a 

significantly larger number of species, that had positive 

correlations with CDI, were selected by the Boruta and 

permutation importance algorithms (Figure 3b and 3c). For 

example, in group A, the number species in the 

Bacteroidaceae family that were kept only by these 

algorithms, showed insignificant positive correlations with 

non-diarrheal controls (Table S4). Moreover, the Boruta 

and permutation importance algorithms selected a huge 

number of species in the Rikenellaceae and 

Erysipelotrichaceae families that were ignored by the FVS 

approach (Figure 3); however, they had very poor 

correlations with CDI case and non-diarrheal controls 

(Table S5 and S6). When we applied our RF classifier to the 

clinical data, we found that antibiotic treatment contributed 

significantly to an increase in the accuracy of the prediction 

models [36, 44]. 

 

3.3 Improved accuracy for relative OTU abundance 

data from shotgun metagenomics data 

Our RF classifier successfully distinguished the CRC cases 

and tumor-free controls in both the 16S rRNA gene 

amplicon data and the shotgun metagenomics data (Figure 

S4). The average accuracy for the 16S rRNA gene amplicon 

data, which included 18,448 OTUs, was 68.18% (AUC = 

0.73). For the shotgun metagenomics data, the accuracies of 

the RF classifier for CRC cases and tumor-free controls 

were 70% (AUC = 0.86) and 80% (AUC = 0.86) 

respectively. The forward variable selection significantly 

improved the performance of the RF algorithm as shown in 

Figure 4. Specifically, the forward variable selection 

detected 75 microbial species (out of 849 species) that were 

differentially abundant in the CRC microbiome, which 

increased the accuracy of the RF classifier to 88% (AUC = 

0.92) for the CRC cases and to 95% (AUC = 0.92) for the 

tumor-free controls (Figure S4). These findings are 

consistent with previous reports of significant enrichment of 

novel species in the fecal microbiomes of patients with 

CRC. For example, we detected the three most important 

species, Parvimonas micra, Flavonifractor plautii, and 

Gemella morbillorum, that helped to improve the accuracy 

of our RF classifier (Figure S5). Gupta et al. [45] found that 

Flavonifractor plautii was associated significantly and 

enriched in CRC samples of Indian patients. Flavonifractor 

plautii was linked with the degradation of beneficial 

anticarcinogenic flavonoids, and this role was strongly 

correlated with enzymes and modules involved in flavonoid 

degradation in CRC samples of the Indian patents. In our 

study, Flavonifractor plautii was significantly associated 

with CRC samples of cohorts from France, Germany, 

China, United States, and Austria (Figure S6).  
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Figure 5:  Correlations among the 23 main functional profiles with CDI cases, antibiotics, proton pump inhibitors, and non-

diarrheal controls. 

 

3.4 Influential bacterial functions predicted from the 

16S rRNA microbiota (OTU) data 

The forward variable selection algorithm detected 119 

OTUs out of 3347 OTUs. To predict functional profiles 

from these OTU candidates, we examined 5818 of the 

21,620 functional profiles of the KEGG organisms in the 

Tax4Fun framework. The RF method gave an average 

accuracy of 81% (AUC = 0.93) for the 5818 predicted 

functional profiles. Specifically, the accuracies for the CDI 

cases, diarrheal controls, and non-diarrheal controls were 

68%, 79%, and 93% (AUCs = 0.88, 0.92, and 0.97) 

respectively. To reduce the computational burden, we used 
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the prescreen algorithm at the first step, which reduced the 

predicted functional profiles from 5818 to 2534. Then, we 

applied the RF-FVS algorithm, which identified 23 

functional profiles (out of 2534) that were different for the 

CDI cases compared with the controls, which significantly 

increased the average accuracy to 90% (AUC = 0.95) 

(Figure S7). Specifically, the accuracies for CDI cases, 

diarrheal controls, and non-diarrheal controls were 77%, 

93%, and 98% (AUCs = 0.90, 0.95, and 0.97) respectively. 

Some of the 23 most significant functional profiles were 

strongly associated with CDI cases but a larger number of 

them were associated with healthy gut (non-diarrheal 

controls) (Figure 5). Our results confirmed that bacteria 

support human health with functions such as histidinol 

dehydrogenase, gluconate 5-dehydrogenase, lactaldehyde 

reductase, and alpha-1,3-rhamnosyltransferase [46-48]. 

However, these functions were absent in the microbiomes 

of patients with CDI, mainly because they were treated with 

antibiotics and proton pump inhibitors, which killed these 

bacteria (Figure 5). Therefore, C. difficile, which is resistant 

to these treatments, became dominant and increased the risk 

of CDI. 

 

3.5 Influential bacterial functions predicted using the 

shotgun metagenomics data 

We used the evolutionary genealogy of genes from the 

Non-supervised Orthologous Groups (eggNOG) 

orthologous gene family abundances and KEGG module 

abundance profiles to detect functional profiles in the 

shotgun metagenomics data for CRC. Because the numbers 

of functions in the KEGG and eggNOG databases were 

very large (7955 and 31,185 respectively), we used the 

prescreen algorithm before applying forward variable 

selection. Our RF-FVS algorithm identified 29 out of 7955 

functions in the KEGG database that significantly improved 

the performance of the RF classifier. Specifically, the 

accuracy increased from 60% (AUC = 0.79) to 84% (AUC 

= 0.87) for CRC cases and from 80% (AUC = 0.79) to 97% 

(AUC = 0.87) for tumor-free controls (Figure S8). A 

number of functions such as HOMODA hydrolase 

(K10623), carbamoyl-phosphate synthase 1 (K01948) had 

strong positive correlations with CRC cases (Figure S9). 

The contributions of some of these functions to the stage 

progress of CRC have been reported. For example, 

carbamoyl-phosphate synthase 1, a metabolic enzyme that 

utilizes ammonia to produce carbamoyl phosphate, is 

encoded by one of four novel driver genes that were 

identified as hubs for stage-III progression of colorectal 

cancer [49]. Our RF-FVS algorithm also identified 53 out of 

31,185 functions in the eggNOG database that significantly 

improved the performance of the RF classifier. Specifically, 

the accuracy increased from 62% (AUC = 0.78) to 86% 

(AUC = 0.90) for CRC cases and from 80% (AUC = 0.78) 

to 97% (AUC = 0.90) for tumor-free controls (Figure S10). 

Although a large number of functions were significantly 

positively correlated with CRC cases, such as 

ENOG410Y6BY, ENOG410XYS8, ENOG411EMB, and 

ENOG410ZGTS (Figure S11), experimental information 

about their functions is lacking. These genes are likely to be 

good candidates for further studies. 
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Data type 
Analysis framework 

Accuracy Time computation 
Boruta alogirithm Random forest Forward algorithm 

OTUs data 
✖ ✔ ✔ 96.04% 1 week 

✔ ✔ ✔ 99.01% 1 day 

PhILR 

transformation 

✖ ✔ ✔ 95.05% 26 hours 

✔ ✔ ✔ 95.05% 8.75 hours 

Functional 

profile data 

✖ ✔ ✔ 90.10% 4 days 

✔ ✔ ✔ 90.10% 13 hours 

 

Table 1: Random forest classifier with forward variable selection (RF-FVS) with and without the prescreen algorithm for the 

CDI dataset. ✔, the prescreen algorithm was used; ✖, the prescreen algorithm was not used. All algorithms were run in a 

parallel environment. The properties of the parallel version were evaluated on a high-performance computer (Intel® Xeon® 

Gold 6230 Processor 2.10 GHz × 2, 40 cores, 2 threads per core, 93.1-Gb RAM) under Ubuntu 20.04.1 LTS. 

 

3.6 Forward variable selection and the prescreening 

algorithm reduced the CPU time 

Although the RF classifier achieved high accuracy in 

analyzing the microbiome data, the high dimensionality of 

the data meant the computational burden was high. The RF 

classifier took about one week to identify 119 species out of 

3347 species in the 16S rRNA gene amplicon data for CDI. 

By using Boruta algorithm to identify a small number of 

informative variables, the 3347 species were reduced to 

1008 species and the RF-FVS algorithm detected 96 species 

with an increased accuracy of 99% (AUC = 0.99) (Table 1). 

The computation time also was reduced from one week to 

one day. For the functional profile predictions, the FS-FVS 

algorithm took about 4 days to identify 65 out of 5818 

functional profiles. The Boruta algorithm reduced the total 

number of functional profiles from 5818 to 2534 and the 

RF-FVS then needed only 13 hours to detect 23 out of the 

2534 functional profiles. The accuracy of the RF classifier 

increased to 90.1%. 

 

 

4. Discussion 

A number of publicly available databases contain 

information about microbial species and their functions that 

are associated with disease or health. The large number of 

microbial species and functional profiles in these databases 

significantly negatively influence the power of machine 

learning classifiers, including the RF algorithm. Further, the 

computational cost of running these algorithms to detect a 

few informative features in the high-dimensional space of 

microbiome data is still very high. In this study, we 

developed a novel procedure that significantly enhances the 

RF classifier and substantially improves its performance in 

terms of high-speed computation and high accuracy. We 

tested its performance using two microbiome datasets that 

contained a large number of species and functional 

signatures (>30,000 variables) but a very small proportion 

of significant variables. Our RF-FVS approach was useful 

in several respects. Firstly, the RF-FVS algorithm identified 

the core set of microbial species and their functional 

profiles, which considerably increased the predictive 

accuracy of the RF classifier. The highest increase in the 
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predictive accuracy was to 99% for the CDI cases 

classification. Moreover, because 16S rRNA sequencing 

data do not directly provide insights into the functional 

capabilities of the microbiome community, we integrated 

the Tax4Fun tool into our pipeline to predict the functional 

profiles of microbial communities based on the 16S rRNA 

datasets. Therefore, our RF-FVS approach could detect the 

minimal-size core set and optimal predictive subset of 

functional profiles of the selected microbial species and the 

linkages among them, which will provide insights into the 

ecological functioning of habitats. Some unknown species 

and genes within the dedicated taxa and functional profiles 

were detected in the group of selected features that made 

meaningful contributions to the predictive performance of 

the RF classifier. These species and genes are likely to be 

good candidates for future experimental studies. 

 

Secondly, there are a number of standard approaches that 

can use 16S rRNA data to infer the metabolic potential of 

the corresponding microbial species. For example, if the 

database is annotated by the Greengenes database, PICRUSt 

can achieve good estimations for the functional potential of 

microbial communities [50]. Tax4Fun is a good option for 

data annotated by the SILVA database. In this study, the 

published databases that we used to checked the 

performance of the RF-FVS approach adopted the 

Ribosomal Database Project (RDP) approach to classify the 

16S rRNA gene sequences taxonomically [51]. Tax4Fun 

achieved significantly better quality of predicted functional 

profiles than PICRUSt; therefore, Tax4Fun was integrated 

as the main option in our pipeline. In the future, we plan to 

check the performance of the RF-FVS approach for other 

databases that provide taxonomy annotations, such as 

Greengenes, LTP, RDP, and SILVA [52]. Moreover, to 

overcome the computational burden of high-dimensional 

data that limits the implementation of existing machine 

learning approaches, we developed a parallel computational 

strategy algorithm for handling large-scale problems in the 

forward variable selection algorithm. This parallel strategy 

helps to equally divide the computational burden of search 

processes among processors. Thus, the forward variable 

selection computation process is completely optimized and 

parallelized based on data partitioning. In microbiome 

datasets of tens of thousands of species and their functional 

profiles, selecting only a few hundred of the most 

significant samples can be a major problem. Our current 

strategy is focused on parallelly searching for the features 

of interest. In the future, the numbers of samples and 

features in microbiome datasets are likely to explode at a 

rapid pace. We anticipate that hybrid-partitioning strategies 

that partition the data both horizontally (over samples) and 

vertically (over features) will become essential to speed up 

the computational processes [53, 54]. 
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