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Abstract 

Background 

Electrocardiogram (ECG) interpretation is based on 

the understanding of cardiac electrical patterns. 

Machine learning (ML) techniques have been used to 

interpret ECGs, however, there is a lacuna in models 

able to identify the timing and affected cardiac 

territories with high accuracy. We aimed to utilize 

machine learning techniques coupled with relevant 

medical knowledge to create a machine learning 

model to detect MI with greater accuracy along with 

affected territory and timing.  

 

Methods 

A dataset containing 452 ECGs with 279 features 

from the University of California, Irvine, Machine 

Learning Repository was utilized. Three machine 

learning classification models namely Bootstrap 

Aggregation Decision Trees (BADT), Random Forest 

(RF) and Multi-layer Perceptron (MLP) were fed 

with ECG features selected based on the medical 

knowledge, categorized as normal, acute ischemic 

changes, old anterior MI and old inferior MI. 
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Results 

The RF, BADT and MP models identified normal, 

acute ischemia, old anterior and old inferior MI with 

overall accuracies of 91.67% (95% CI: 84.24 – 

96.33%), 89.58 (95% CI: 81.68 – 94.89%) and 85.42 

(95% CI: 76.74 – 91.79%) respectively. All 3 models 

identified old anterior MIs with 100% sensitivity and 

specificity and RF model also identified old inferior 

MIs with same accuracy. 

 

Conclusion  

Machine learning models trained utilizing medical 

knowledge on the ECG changes in myocardial 

infarction can achieve greater accuracy in detecting 

MI along with affected area and timing. This study 

can be expanded by using a more extensive data set, 

to include more detail regarding timing and 

territories, as well as the detection and classification 

of arrhythmias. 

 

Keywords: ECG; Machine learning; Myocardial 

infarction 

 

1. Introduction 

Since its development in 1902, Electrocardiography 

(ECG) has evolved steadily to the cost effective, 

simple and non- invasive 12 lead ECG used in the 

modern age, which is one of the most widely used 

investigations worldwide. It remains a cornerstone 

investigation in the medical field, utilized for the 

diagnosis of countless medical conditions including 

cardiac conditions such as acute coronary syndromes 

and arrhythmias and non- cardiac conditions such as 

electrolyte imbalances. A standard 12 lead ECG 

records information from 6 limb leads namely lead i, 

ii, iii, aVR, aVL and aVF and 6 chest leads from V1-

V6. These leads look at the heart from different 

directions and record the electrical signals 

accordingly. The standard ECG has a p wave, QRS 

complex and t wave [1]. The interpretation of ECG is 

based on the understanding of normal electrical 

patterns produced by the electrical activity of the 

heart and the variations in specific conditions. This 

pattern recognition process requires targeted 

knowledge and depends on the ability and training of 

the interpreter. With the development of machine 

learning techniques, it is possible to train a model to 

recognize these patterns and interpret the ECG 

tracing. There have been models reported which 

aimed to detect arrhythmias by classifying ECGs as 

normal and abnormal and to narrow down the 

specific arrhythmia by classifying them into multiple 

classes [2,3]. However, as a review done in 2017 

reveals, studies regarding myocardial infarction (MI) 

and the affected territory are few [4]. A vast amount 

of information can be gathered using the ECG, from 

the presence of an MI up to the affected area, timing 

and complications. The ECG changes of an MI 

depend on the lead and the timing and may include 

tall T waves in the initial stage, ST segment 

elevation, left bundle branch block, prolonged QRS 

complex, increased heart rate (reduced R-R interval) 

and q waves in an old MI. According to the affected 

territory, these changes may be seen in different 

leads. For example, in leads ii, iii and aVF in an 

inferior MI and in the chest leads in an anterior MI 

[5]. Therefore, with these changes in mind utilizing 

the medical knowledge of ECG changes in MI, we 

aimed to create a machine learning model to detect 

MI along with the information regarding the affected 

territory and timing. 
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2. Materials and Methods 

The dataset used was obtained from University of 

California, Irvine (UCI) Machine Learning Repository, 

which contained 279 predictor variables of 452 

observations [6]. The variables included age, sex, 

height, weight and attributes derived from standard 12 

lead ECG tracings. Each observation had been assigned 

one of sixteen possible outcomes. The original dataset 

was filtered to obtain observations categorized as 

Normal (class 1), Ischemic changes (class 2), Old 

Anterior Myocardial Infarction (class 3) and Old 

Inferior Myocardial Infarction (class 4), excluding 

other classes which contained a very few number of 

observations. The dataset was randomly split into a 

training set (70%) and a test set (30%). Ninety-nine 

features were selected based on the ECG changes that 

are observed following a myocardial infarction. They 

are heart rate, the amplitudes of q, R and T waves and 

the durations of the QRS complexes along with the age 

and the sex of the subject as summarized in Table 1. 

 

Feature Number of leads Number of predictors 

  Age 1 

  Sex 1 

  Heart rate 1 

Amplitudes 

Q wave amplitude 12 12 

R wave amplitude 12 12 

T wave amplitude 12 12 

QRS Duration 

Q wave duration 12 12 

R wave duration 12 12 

S wave duration 12 12 

R' wave duration 12 12 

S' wave duration 12 12 

Total     99 

 

Table 1: Features selected with the number of predictors 

 

26 predictors (R’ and S’ waves of all the 12 leads and Q 

wave amplitudes of V2 and V3 leads) that had near-

zero variance across the observations were excluded.  

The selected 73 features were scaled and centered to 

have a mean of 0 and standard deviation of 1. 

Three machine learning classification models 

(Bootstrap Aggregation Decision Trees, Random 

Forest, Artificial Neural Network) were trained using 

the training dataset, following data up-sampling to 

overcome class imbalances, optimizing for the Kappa 

statistic, which is a measurement of inter-rater 

reliability which takes the possibility of percentage 

agreement occurring by chance, into account.  

Parameter tuning of the models was done with 10-fold 

repeated cross validation. Cross validation folds were 

sampled identically to make inter-model performance 

evaluation possible using accuracy and Kappa statistics 

Performance of the final model was evaluated using 

sensitivity, specificity, positive predictive value, 

negative predictive value and balanced accuracy for 

each class for the test dataset. The evaluation metrics 

are summarized below. 
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Accuracy = Number of correct predictions / The total 

number of predictions 

Sensitivity = True positive / (True positive + False 

negative) 

Specificity = True negative / (True negative + False 

positive) 

Positive predictive value = True positive / (True 

Positive + False positive) 

Negative predictive value = True negative / (True 

negative + False negative) 

 

3. Results 

The Bootstrap Aggregation classifier had a mean 

accuracy of 0.98 and a mean Kappa value of 0.97 for 

the 100 cross validation resamples. The Random 

Forests model yielded the highest cross validation 

accuracy (0.99) and Kappa metric (0.99) out of the 

three models, with 3 randomly selected variables for 

splitting each tree node as illustrated in figure 1.  

The Feed forward Artificial Neural Network was a 

Multi-layer Perceptron with one hidden layer and the 

architecture is depicted in figure 2. This model 

yielded the highest cross validation accuracy (0.98) 

with 10 hidden units as illustrated in figure 3. The 

distributions of the evaluation metrics of the cross-

validation samples of the three models were as 

follows (Figure 4). 

 

 

 

Figure 1: Cross validation Kappa statistics for different numbers of randomly selected predictors of the Random 

Forests model. 
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Figure 2: The architecture of the Perceptron 

 

 

Figure 3: Cross validation Kappa statistics for different numbers hidden units of the neural network. 
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Figure 4: The distributions of the evaluation metrics of the cross-validation samples of the three models 

 

Box-and-whisker plots of the resampling 

distributions of the accuracy and the Kappa between 

the models is depicted in figure 5 and the scatter plot 

matrix of the resampling distributions of the Kappa 

between the models is represented in figure 6. 

 

Figure 5: Resampling distributions of the accuracy and the Kappa between the models.  

RF = Random Forests model, treebag = Bootstrap Aggregation Decision Tree model 
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Figure 6: Scatter plot matrix of the resampling distributions of the Kappa statistic between the models. RF = 

Random Forests model, treebag = Bootstrap Aggregation Decision Tree model 

 

All the three models were found to have excellent 

cross validation accuracies. The previously unseen 

test data split was used to evaluate the final model 

performances. The Random Forests model predicted 

the classes of the test dataset with an overall accuracy 

of 0.92 (95% CI 0.84 - 0.96) with 100% sensitivity 

and specificity for identifying old anterior and old 

inferior myocardial infarctions. The overall 

accuracies of the Bootstrap Aggregation Decision 

Trees and the Multi-layer Perceptron models were 

0.90 (95% CI 0.82 - 0.95) and 0.85 (95% CI 0.77 - 

0.92). Both these models could identify old anterior 

myocardial infarctions with 100% sensitivity and 

specificity. The confusion matrices and evaluation 

metrics of the three models are summarized below in 

tables 2-7. 
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  Class 1 Class 2 Class 3 Class 4 

Class 1 71 6 0 0 

Class 2 2 10 0 0 

Class 3 0 0 5 0 

Class 4 0 0 0 2 

 

Table 2: Confusion matrices of the Random Forests model 

 

  Sensitivity Specificity Pos Pred Value Neg Pred Value Balanced Accuracy 

Class 1 0.97 0.74 0.92 0.9 0.86 

Class 2 0.63 0.98 0.83 0.93 0.8 

Class 3 1 1 1 1 1 

Class 4 1 1 1 1 1 

 

Table 3: Evaluation metrics of the Random Forests model 

 

  Class 1 Class 2 Class 3 Class 4 

Class 1 69 7 0 1 

Class 2 1 10 0 1 

Class 3 0 0 5 0 

Class 4 0 0 0 2 

 

Table 4: Confusion matrices of the Bootstrap Aggregation Decision Trees 

 

  Sensitivity Specificity Pos Pred Value Neg Pred Value Balanced Accuracy 

Class 1 0.1 0.69 0.9 0.95 0.84 

Class 2 0.59 0.98 0.83 0.92 0.78 

Class 3 1 1 1 1 1 

Class 4 0.5 1 1 0.98 0.75 

 

Table 5: Evaluation metrics of the Bootstrap Aggregation Decision Trees 

 

  Class 1 Class 2 Class 3 Class 4 

Class 1 65 8 0 4 

Class 2 2 10 0 0 

Class 3 0 0 5 0 

Class 4 0 0 0 2 

 

Table 6: Confusion matrices of the Multi-layer Perceptron 
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  Sensitivity Specificity Pos Pred Value Neg Pred Value Balanced Accuracy 

Class 1 0.97 0.58 0.84 0.89 0.78 

Class 2 0.56 0.97 0.83 0.91 0.76 

Class 3 1 1 1 1 1 

Class 4 0.33 1 1 0.96 0.67 

 

Table 7: Evaluation metrics of the Multi-layer Perceptron 

 

4. Discussion 

The UCI machine learning dataset has been utilized 

by previous studies for the detection of heart disease, 

mainly arrhythmias. A modular neural network 

model was proposed by Jadhav et al., aimed to detect 

arrhythmias by classifying the ECG tracings as 

‘normal’ and ‘abnormal’. It was found that the model 

classified the tracings into the two classes with 

82.22% accuracy [2]. Batra et al., also utilized 

multiple machine learning algorithms for the 

classification of arrhythmias however, in this study, 

into multiple classes. The maximum accuracy 

achieved was 84.82% using Support Vector Machine 

(SVM) algorithm and gradient boosting, in 

conjunction [3]. A model proposed by Mitra et al., 

utilized neural networks for the classification of 

arrhythmias into ‘normal’ and ‘arrhythmia’. It was 

found that an accuracy of 87.71% was achievable 

using this method [7]. A notable characteristic in the 

above models is that the feature selection was not 

performed based on medical knowledge regarding the 

diseases but rather by mathematical feature reduction 

techniques, mainly with correlation-based feature 

subset selections. It is possible that this may be 

responsible for the relatively similar accuracies 

which do not exceed 90%. Furthermore, this data set 

has not been utilized specifically for the detection of 

myocardial infarctions and its subsets. It is evident by 

our study that the detection and classification of 

myocardial infarction with regard to timing and 

territory can be achieved with a relatively higher 

accuracy. The overall accuracies obtained by 

Random Forests, Bootstrap Aggregation Decision 

Trees and Multi-layer Perceptron were 0.92, 0.90 and 

0.85 respectively. The better model performances 

observed in our study may be attributed to the feature 

selection technique utilized, which was 

predominantly based on the known 

electrophysiological changes occurring during an MI. 

The availability of an interpretation along with the 

tracing would be of paramount importance in 

conditions like myocardial infarctions where time is 

of the essence. The need to wait for trained personnel 

for the interpretation of ECG can be avoided and 

hence delays minimized. Patients requiring emergent 

care can be identified in settings with a large patient 

load. In addition, implanted cardioverter defibrillators 

(ICDs) and pacemakers of patients can also be 

equipped with this technique, enabling the detection 

of MI as well. Hence, it is evident that further studies 

to explore the boundaries of these new upcoming 

leaps in technology should be performed for the 

improvement of medical diagnostics. 

 

5. Conclusion 

Machine learning models trained utilizing medical 

knowledge on the ECG changes in myocardial 

infarction can achieve greater accuracy in detecting 
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MI along with affected area and timing. This study 

can be expanded by using a more extensive data set, 

to include more detail regarding timing and 

territories, as well as the detection and classification 

of arrhythmias. 
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