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Abstract
Introduction: Pre-operative risk stratification is useful for resource 
allocation, for shared decision-making, and informed consent. Pre-operative 
risk prediction is not widely used due to the subjective nature of available 
models, the requirement of additional pre-operative investigations, or 
complex calculations.

Objective: We aimed to derive and internally validate a simple risk prediction 
model, which could address most possible aspects of patient assessment pre-
operatively and help clinicians to predict postoperative morbidity or 30 days 
mortality with reasonable accuracy in patients undergoing Laparotomy.

Methodology: A prospective and retrospective observational study was 
carried out in a tertiary care hospital. Two hundred retrospective and 
101 prospective patients of age more than 18 years, who had undergone 
Emergency or Elective laparotomy were included. In 1st stage, Patient data 
like demographics, comorbidities, physiological data, laboratory results, and 
surgical details were collected in a retrospective manner from 2016-2019. The 
outcome of the patient including details of post-operative 30 days mortality 
and morbidities was recorded. A simplified risk prediction model was derived 
using regression analysis and considering the odds ratio. A 10-point score 
so derived labeled as “Simplified Max Score (SMS)” was validated in a 
prospective manner (2019-2020).

Results: Serum Urea, Serum Albumin, Neutrophils to Lymphocytes ratio, 
METS, and the presence of CVA, CLD, and COPD were the most significant 
predictors per the retrospective cohort (n=200). On this basis, a Simplified 
Max Score (SMS) was derived. The derived formula had an AUROC of 0.801 
for morbidity and 0.935 for mortality in the retrospective cohort. Results 
were validated in the prospective cohort (n=101) which showed acceptable 
reproducibility with AUROC of 0.99 for morbidity and 0.64 for mortality. 
SMS showed good predictability with AUROC of 0.804 for morbidity and 
0.86 for 30 days post-operative mortality, when applied to an entire cohort 
of 301 patients. SMS also performed better than the American Society of 
Anesthesiologist's score.

Conclusion: The 10-point SMS score gives a simplified prediction of both 
postoperative morbidity and mortality after laparotomy.

Introduction
An estimated 250 million surgeries are performed worldwide each year, 

and this number is increasing rapidly [1]. As access to surgery is increasing, 
so is number of patients with post-operative morbidities and mortality. Data 
from European countries suggests that in-hospital mortality after surgery can 
be 3-4% [2] and morbidities can range from 3-17% [3,4]. Pre-operative risk 
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prospective manner, which involved collection of patient’s 
data as before, but prospectively in view of our developed 
score. Finally, a simplified risk prediction model was 
formulated using predictors derived. This simplified score 
was validated on entire cohort. 

Statistical Analysis
The presentation of the Categorical variables was done in 

the form of number and percentage (%). On the other hand, 
the quantitative data were presented as the means ± SD and 
as median with 25th and 75th percentiles (interquartile range). 
The data normality was checked by using Kolmogorov-
Smirnov test. The cases in which the data was not normal, we 
used non parametric tests. The following statistical tests were 
applied for the results:

1.  The association of the variables which were quantitative 
and not normally distributed in nature were analyzed using 
Mann-Whitney Test (for two groups) and independent t 
test was used for association of normally distributed data 
between two groups.

2.  The association of the variables which were qualitative 
in nature were analyzed using Chi-Square test. If any cell 
had an expected value of less than 5 then Fisher’s exact 
test was used. 

3.  Multivariate forward logistic regression was used to find 
out significant risk factors of mortality and morbidity.

4.  Receiver operating characteristic curve was used to find 
out cut off point of parameters for predicting morbidity 
and mortality.

5.  Sensitivity, specificity, positive predictive value and 
negative predictive value of model was calculated.

The data analysis was done with the use of Statistical 
Package for Social Sciences (SPSS) software, IBM 
manufacturer, Chicago, USA, ver. 21.0.

For statistical significance, p value of less than 0.05 was 
considered statistically significant. 

Results
Out of total 301 patients, 200 were retrospectively 

collected data for derivation and 101 prospective subjects for 
internal validation of risk prediction score. 

Derivational Phase
Retrospective data from 200 patient was collected and 

analysed. Descriptive data of retrospective cohort is given in 
table 1.

Regression analysis
Details of clinical examination, investigations done, 

treatment given, surgical intervention, and outcome of 
retrospective patients were collected. Factors most significantly 

stratification is useful for resource allocation, for decision 
making and for informed consent and prognostication. 
Three of the most commonly used risk stratification tools, 
the American Society of Anaesthesiologists’ Physical Status 
Score (ASA-PSS) [5,6], Charlson Age-comorbidity index 
(CACI), and the Physiological and Operative Severity Score 
for the enUmeration of Mortality and morbidity (POSSUM) 
[7] have been evaluated in various validation studies. A 
number of derivatives of these three systems have also been 
validated like the Surgical Risk Scale [8], and Donati’s 
Surgical Risk Score [9], both based on the ASA-PSS, but 
also include details of the proposed surgical procedure. There 
are hundreds of other models available for pre-operative 
risk prediction. Drawbacks associated with most of these 
are either their subjective nature or involved complex 
calculations. Many of these models may need of additional 
investigations and generally have disease specific [10] or 
outcome specific [11] risk prediction. Recent studies have 
also evaluated functional capacity as prediction measure of 
post-operative morbidity and mortality [12-14]. It has been 
found that, these are more beneficial for identifying patient 
with low cardiopulmonary risk. 

Variety of biomarkers are available for pre-operative 
evaluation of patients. Many are used in most commonly 
known risk prediction models in some form or another. We 
wanted a simple system of risk prediction, based on routine 
assessment for patients undergoing laparotomies. Aim of the 
present study is to derive and also internally validate a simple 
risk prediction model, which could address all possible 
aspects of patient assessment pre-operatively and help 
clinicians to predict possibility of post-operative morbidity or 
30 days mortality with reasonable accuracy.

Methodology
A retrospective and prospective observational study was 

carried out in a tertiary care hospital of North India. 200 
retrospective and 101 prospective patients of age more than 18 
years, who had undergone Emergency or Elective laparotomy 
were included in the study. In 1st stage, data was collected 
in a retrospective manner using available document of 
patients from 2016-2018. Details including gender, age, any 
associated comorbid diseases, general physical examination, 
biochemical investigations, biophysical assessment and 
systemic examination were recorded. Data also included 
details of investigations requested, treatment given, and 
surgical intervention. Outcome of patient included, post-
operative 30 days mortality and morbidities as defined by 
Clavien-Dindo classification (CDC). Severe morbidity was 
defined as CDC >/=3. A regression analysis was done on 
retrospective data, to identify most significantly associated 
factors as predictors of morbidity and 30 days mortality. 
Predictive formula was derived based on identified variable. 
In 2nd stage, validation of developed score was done in a 
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associated with post-operative morbidity and mortality as per 
Clavien-Dindo classification were analysed using Univariate 
regression. On performing multivariate regression for 
morbidity, neutrophil/lymphocyte ratio, Urea (mg/dL) and 
albumin (gm/dL) were significant independent risk factors of 
morbidity after adjusting for confounding factors. With the 
increase in albumin (gm/dL), risk of morbidity significantly 
decreases with odds ratio of 0.358(0.215 to 0.594). With 
the increase in neutrophil/lymphocyte ratio, Urea (mg/dL), 
risk of morbidity significantly increases with odds ratio of 
1.056(1.003 to 1.111), 1.025(1.004 to 1.046) respectively. 
On performing multivariate regression for mortality 
analysis, neutrophil/lymphocyte ratio, Urea(mg/dL), MET: 
<4, cerebrovascular accident, COPD/Asthma, chronic liver 
disease were significant independent risk factors of mortality 
after adjusting for confounding factors. With the increase 
in neutrophil/lymphocyte ratio and Urea (mg/dL), risk of 
mortality significantly increases with adjusted odds ratio of 
1.094(1.01 to 1.184), 1.029(1.005 to 1.053) respectively. 
Patients with MET: <4, cerebrovascular accident, COPD/

Asthma, chronic liver disease had significantly high risk 
of mortality with adjusted odds ratio of 4.918(1.249 to 
19.358), 28.905(2.747 to 304.137), 6.499(1.775 to 23.799), 
15.205(3.055 to 75.684) respectively. These data have been 
compiled in table 2.

Receiver operating characteristic curve (ROC) figure 1, 
suggest, derived parameters had significant discriminatory 
power to predict morbidity. Discriminatory power of Urea 
(mg/dL) (AUC 0.677; 95% CI: 0.608 to 0.741), neutrophil/
lymphocyte ratio (AUC 0.685; 95% CI: 0.616 to 0.749) and 
albumin (gm/dL) (AUC 0.75; 95% CI: 0.684 to 0.809) was 
acceptable. Among all the parameters, Albumin (gm/dL) was 
the best predictor of morbidity at cut off point of ≤3.1 with 
75.00% chances of correctly predicting morbidity. Neutrophil/
lymphocyte ratio had sensitivity of 65.96% followed by 
albumin (gm/dL) (61.70%), Urea (mg/dL) (53.19%). In 
prediction of morbidity, Urea (mg/dL) had lowest sensitivity 
of 53.19%. On the other hand, Urea (mg/dL) had specificity of 
83.01% followed by albumin (gm/dL) (79.74%), neutrophil/

  Total (200) Morbidity (47) Mortality (24)
Age  57.62 ± 14.1 58.68 ± 16.28 59.17 ± 13.26

Male: Female  122:78 34:13:00 18:06

ASA </=3 160 22 7

 >3 40 25 17

MET <4 45 28 18

 >/=4 155 19 6

Organs Colorectal 54 17 9

 

Hepato-biliary 54 7 5

Multi visceral 3 1 0

Pancreas 16 2 2

Renal 3 1 1

Retro peritoneum 5 1 1

Small bowel 35 10 3

Spleen 3 0 0

Upper GI 27 8 3

Co-morbidities (%) Malignancy 74 (45%) 17 (18.68%) 7 (7.69%)

 

Hypertension 80 (40%) 23 (28.75%) 13 (16.25%)

Diabetes 39 (19.50%) 10 (25.64%) 7 (17.95%)

COPD/Asthma 34 (17%) 17 (50%) 11 (32.35%)

Chemo-radiotherapy 28 (14%) 6 (21.43%) 2 (7.14%)

Coronary artery disease 23 (11.50%) 9 (39.13%) 4 (17.39%)

Hypothyroid 15 (7.50%) 2 (13.33%) 1 (6.67%)

Chronic liver disease 15 (7.50%) 8 (53.33%) 7 (46.67%)

Chronic kidney disease 8 (4%) 7 (87.5%) 7 (87.50%)

Cerebral vascular accident 7 (3.50%) 5 (71.43%) 5 (71.43%)

Inflammatory bowel disease 1 (0.50%) 0.00% 0.00%

Table 1: Descriptive data of derivational cohort (200 patients). American Society of Anaesthesiologists (ASA), metabolic equivalents (MET), 
Gastrointestinal (GI), chronic obstructive pulmonary disease (COPD)
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Regression analysis of 
multiple factors affecting 

morbidity
   

Regression analysis 
of multiple factors 
affecting mortality

   

Univariate analysis p-Value Multivariate 
analysis p-Value Univariate analysis p-Value Multivariate 

analysis p-Value

ASA>/= 3 <0.0001   ASA>/= 3 <0.0001   

MET<4 <0.0001   MET<4 <0.0001 MET<4 0.023

Emergency surgery <0.0001   Emergency surgery <0.0001   

High estimated blood loss 0.002   Cerebrovascular 
accident 0.0003 Cerebrovascular 

accident 0.005

Cerebrovascular accident 0.009   COPD/Asthma <0.0001 COPD/Asthma 0.005

COPD/Asthma <0.0001   CLD <0.0001 CLD 0.001

CLD 0.005   CKD <0.0001   

CKD 0.0002   High pulse rate <0.0001   

High pulse rate <0.0001   Low Systolic Blood 
Pressure 0.009   

Low Systolic Blood 
Pressure 0.005   Low Diastolic Blood 

Pressure 0.021   

Low Diastolic Blood 
Pressure 0.006   High Respiratory rate <0.0001   

High Respiratory rate <0.0001   Low Packed cell 
volume 0.0006   

Low Haemoglobin 0.004   High Neutrophils 0.0002   

Low Packed cell volume 0.0003   Low Lymphocytes 0.0002   

High Neutrophils 0.0006   
High Neutrophils to 
Lymphocytes ratio 

(>4.24)
<0.0001

High Neutrophils 
to Lymphocytes 

ratio
0.027

Low Lymphocytes 0.0003   High Urea (>30.7) <0.0001 High Urea 0.019

High Neutrophils to 
Lymphocytes ratio (>4.24) <0.0001

High Neutrophils 
to Lymphocytes 

ratio
0.037 High Creatinine <0.0001   

High Urea (>32.1) 0.0002 High Urea 0.017 Hypernatremia 0.008   

High Creatinine 0.0006   High direct bilirubin 0.046   

High SGOT 0.049   High SGOT 0.003   

High INR 0.002   High INR 0.001   

Low Total protein <0.0001   Low Total protein <0.0001   

Low Albumin (<3.1) <0.0001 Low Albumin <0.0001 Low Albumin <0.0001   

Albumin: Globulin ratio 0.0001   Albumin: Globulin ratio 0.0009   

    HCV 0.039   

Table 2: Univariate and Multivariate analysis on derivational cohort for morbidity and mortality prediction. American Society of 
Anaesthesiologists (ASA), metabolic equivalents (MET), chronic obstructive pulmonary disease (COPD), chronic liver disease (CLD), 
cerebrovascular accident (CVA), chronic kidney disease (CKD), glutamic-oxaloacetic transaminase (SGOT), international normalised ration 
(INR), hepatitis C virus (HCV)
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lymphocyte ratio (72.55%). In prediction of morbidity, 
Neutrophil/lymphocyte ratio had lowest specificity of 
72.55%. Highest positive predictive value was found in Urea 
(mg/dL) (49.00%) and highest negative predictive value was 
found in neutrophil/lymphocyte ratio (87.40%).

Formula found fitting
Predicted (Morbidity) = 1 / (1 + exp 

( - ( 1 . 1 1 0 6 5 + 0 . 0 5 4 2 5 x N e u t r o p h i l / l y m p h o c y t e 

ratio+0.02471xUrea (mg/dL)- 1.02844xAlbumin (gm/dL))))
Area under curve: - 0.801

Receiver operating characteristic curve (ROC) figure 2, 
suggest, derived parameters had significant discriminatory 
power to predict mortality. Discriminatory power of Urea 
(mg/dL) (AUC 0.677; 95% CI: 0.608 to 0.741), neutrophil/
lymphocyte ratio (AUC 0.685; 95% CI: 0.616 to 0.749) 
and albumin (gm) (AUC 0.75; 95% CI: 0.684 to 0.809) was 
acceptable. Among all the parameters, Albumin (gm) was 
the best predictor of morbidity at cut off point of ≤3.1 with 
75.00% chances of correctly predicting morbidity. Neutrophil/
lymphocyte ratio had sensitivity of 65.96% followed 
by albumin (gm) (61.70%), Urea (mg/dL) (53.19%). In 
prediction of morbidity, Urea (mg/dL) had lowest sensitivity 
of 53.19%. On the other hand, Urea (mg/dL) had specificity 
of 83.01% followed by albumin (gm) (79.74%), neutrophil/
lymphocyte ratio (72.55%). In prediction of morbidity, 
Neutrophil/lymphocyte ratio had lowest specificity of 
72.55%. Highest positive predictive value was found in Urea 
(mg/dL) (49.00%) and highest negative predictive value was 
found in neutrophil/lymphocyte ratio (87.40%). 

Formula found fitting
P r e d i c t e d ( M o r t a l i t y ) = 1 / ( 1 + e x p ( - ( -

5 . 5 2 5 5 9 + 0 . 0 8 9 5 3 x N e u t r o p h i l / l y m p h o c y t e -
ratio+0.02822xUrea (mg/dL)+1.59285xMET-
< 4 + 3 . 3 6 4 0 1 x C e r e b r o v a s c u l a r - a c c i d e n t -
Yes+1.87163xCOPD/Asthma 

yes+2.72163xChronic liver disease-Yes)))
Area under the curve: -0.935

Figure 1: Multivariate forward logistic regression to find out 
significant risk factors of severe morbidity. Receiver operating 
characteristic curve (ROC), Area under curve (AUC)

Figure 2: Multivariate logistic regression to find out significant risk 
factors of mortality. Receiver operating characteristic curve (ROC), 
Area under curve (AUC)

Variables Predicted morbidity Predicted mortality
Sensitivity (95% CI) 100% (59.04% to 100.00%) 28.57% (3.67% to 70.96%)

Specificity (95% CI) 97.87% (92.52% to 99.74%) 98.94% (94.21% to 99.97%)

AUC (95% CI) 0.99(0.94 to 1.00) 0.64(0.54 to 0.73)

Positive Predictive Value (95% CI) 77.78% (39.99% to 97.19%) 66.67% (9.43% to 99.16%)

Negative Predictive Value (95% CI) 100% (96.07% to 100.00%) 94.9% (88.49% to 98.32%)

Diagnostic accuracy 98.02% 94.06%

Table 3: Sensitivity, specificity of model for predicting mortality and morbidity. Confidence interval (CI)

Variables             Score 0 1 2 3

Serum Urea (mg/dl) </= 31.0 > 31.0 - -

Neutrophils to Lymphocytes (N/L) ratio </= 4.24 > 4.24 - -

Serum Albumin (g/dl) >/= 3.1 <3.1 - -

MET > 4 < 4 - -

COPD - + - -

CLD - - + -

CVA - - - +

Table 4: Simplified risk prediction model for predicting mortality and morbidity- Simplified Max Score {SMS}.
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Validation of derived model on prospective data 
Prospective cohort consisting of 101 patients were 

analysed for validity analysis. Table 3 shows that the patients 
who had morbidity, 100.00% of patients were predicted 
by the model. If model has predicted morbidity, then there 
was 77.78% probability of morbidity and if model has not 
predicted morbidity, then 100.00% chances of no morbidity. 
Among patients who did not have morbidity, 97.87% of 
patients were not predicted as morbidity by the model. 
The above table shows that the patients who had mortality, 
28.57% of patients were predicted by the model. If model 
has predicted mortality, then there was 66.67% probability 
of mortality and if model has not predicted mortality, then 
94.9% chances of no mortality. Among patients who did not 
died, 98.94% of patients were not predicted as mortality by 
the model.

Combined modelling
To further ease the use of derived model, we explored 

various combined models. The use of predictors was based 
on already calculated odds ratio in regression analysis. 
Seven factors including 3 quantitative variables (S. Urea, 
S. Albumin, Neutrophils to Lymphocytes ratio) along with 
METS and 3 co-morbidities (CVA, CLD, COPD) were found 
to be significantly associated with post-operative morbidity 
and 30 days mortality. Derived simplified risk prediction 
model is presented in table 4.

As seen in figure 3, discriminatory power of Simplified 
Max Score (AUC 0.804; 95% CI: 0.754 to 0.847) was 
excellent for prediction of morbidity. Simplified Max score 
(SMS) was the significant predictor of morbidity at cut off 
point of >0 with 80.40% chances of correctly predicting 
morbidity when applied to combined 301 patients.

Figure 3: Receiver operating characteristic curve to find out 
cut off point of Simplified Max Score for predicting morbidity.

Figure 4: Receiver operating characteristic curve to find out 
cut off point of Simplified Max Score for predicting mortality.

Model
AUROC for 

30- days 
mortality

Standard 
error

AUROC 
for Severe 
morbidities

Standard 
error

SMS 0.86 0.0366 0.804 0.0296

ASA 0.811 0.0485 0.528 0.0417

Table 5: Receiver operating characteristic curve of SMS and 
ASA, for predicting 30 days post-operative mortality and severe 
morbidities

Authors Model Used Outcome Morbidity % AUROC 
reported Mortality % AUROC 

reported
Brook (22) POSSUM 30 days mortality NR NR 8.4 0.92

 P-POSSUM     0.92

 Surgical risk scale     0.89
DasGupta 

(30) Edmonton frail score 30 days mortality and post op 
morbidity 25% 0.69 0.80% NR

Davenport 
(74) NSQIP 30 days mortality and post op 

morbidity 6.70% 0.709 1.50% 0.958

 ASA   0.72  0.889

 ASA+NSQIP   0.782  0.96

Donati (9) Surical risk score 30 days mortality NR NR 1.90% 0.888

 POSSUM     0.915

 P-POSSUM     0.912

Table 6: Receiver operating characteristic curve of various studies with various models used, for predicting 30 days post-operative mortality 
and morbidities. The Physiological and Operative Severity Score for the enUmeration of Mortality and morbidity (POSSUM), Portsmouth-
POSSUM (P-POSSUM), National Surgical Quality Improvement Program (NSQIP), American Society of Anaesthesiologists (ASA),  
Estimation of Physiologic Ability and Surgical Stress (E-PASS), Modified E-PASS (mE-PASS), Combined Assessment of Risk Encountered 
in Surgery (CARES), simplified max score (SMS)
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 ASA     0.81

Haga (75) E-PASS 30 days mortality NR NR NR 0.82

 mE-PASS     0.81

 P-POSSUM     0.74

 Surgical risk score     0.73

Kuzu (29) Subjective Global 
Assessment 30 days mortality 28.47% 0.669 4.34% 0.687

 Nutritional risk index   0.659  0.797

 Maastricht index   0.671  0.743

Wong (66) P-POSSUM 30 days mortality NR NR 1.40% 0.89

 Surgical risk scale     0.85

 Surgical Outcome Risk 
Tool     0.9

Chan et al 
(50) CARES 30 days mortality NR NR 0.60% 0.934

Our Study SMS model 30 days mortality and post op 
morbidity 21.93% 0.804 10.30% 0.86

Discriminatory power of Simplified Max Score (AUC 
0.86; 95% CI: 0.816 to 0.897) was also excellent for 
prediction of 30- days post-operative mortality. Simplified 
max score (SMS) was the significant predictor of mortality 
at cut off point of >1 with 86.00% chances of correctly 
predicting mortality. 

Comparison to ASA (American Society of 
Anaesthesiologists)

ASA is the most widely available pre-operative tool, 
used in world for prognostication of patients pre-operatively. 
We compared our simplified max score SMS model with 
ASA and found that SMS shows superior performance in 
predicting both morbidity and 30 days mortality as shown in 
table 5, below comparing area under receiver operating curve 
AUROC for both models. SMS in addition to being superior 
is also reproducible as it only uses objective data.

Discussion
We developed and internally validated a Simplified Max 

Score (SMS) for prediction of 30 days mortality and morbidity 
in patients who underwent laparotomy for both emergency 
and elective cases. Seven factors including 3 quantitative 
variables (S. Urea, S. Albumin, Neutrophils to Lymphocytes 
ratio) along with METS and 3 co-morbidities (CVA, CLD, 
COPD) were found to be significantly associated with post-
operative morbidity and 30 days mortality.

In routine surgical practice pre-operative risk prediction 
is not done. Reason for this is, complex and subjective 
nature of available models. Some of the available models 
require additional pre-operative investigations which make 
them difficult to be universally applied. SMS is a practical 
model, which uses minimal and routinely done objective 

data for prediction of post-operative morbidities and 30 days 
mortality.

The SMS tool is an economical model, consisting of 
only 7 preoperative data, which are used to predict both 30 
days mortality and severe morbidity risk, compared to 18 
preoperative, intraoperative and postoperative variables for 
POSSUM and 22 preoperative patient risk factors for the 
ACS-NSQIP model [24,67]. Apart from most commonly 
studied and validated models like POSSUM, P-POSSUM 
and ACS-NSQIP, there are plenty of other validated model 
like APACHE II, SORT, SRS, E-PASS etc., but they all are 
either too subjective to be applied or based on intra-operative 
findings. In addition to, using minimal number of pre-
operative data, prediction of morbidity and mortality using 
SMS model is good in our cohort of patient. Reason for this 
can be that, use of chronic illness factors (covered by major 
co-morbidities) with bio-chemical data (reflecting current 
health status), along with physiological indicators (in form of 
Metabolic Equivalent score (MET)), nearly cover all clinical 
perspective of pre-operative patient evaluation.

Various biochemical parameters evaluated are part of 
varied models with similar aim. SMS includes, serum urea, 
serum albumin and Neutrophils to Lymphocytes ratio only, 
as found significant on multi-regression for our cohort of the 
patients. Besides being objective in nature, these variables 
are among the most basic investigations done as part of pre-
operative evaluation of any patient. For identifying cut off for 
various quantitative variables we used area under the curve 
separately for each variable. Various cut off has been reported 
for serum urea as an indicator of pre-operative hydration 
status [68]. Higher pre-operative values and inability to 
return to normal in post-operative setting is associated with 
morbidity and mortality among patients. Serum albumin 
is a useful indicator of pre-operative nutritional status of 
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patient and its lower values are important predictor of worse 
post-operative prognosis [69]. Evaluation of Neutrophils 
to Lymphocyte ratio have shown that higher pre-operative 
values are associated with higher infectious complications 
and mortality [64,65,70].

We included both elective as well as emergency cases in our 
cohort as the physiological reserve of patient and associated 
exercise tolerance is important for deciding prognosis of 
patient undergoing non-cardiac surgeries. Various modalities 
like Time up and go (TUG) and Timed stair climb (TSC) 
have been evaluated and found significant previously [47,49]. 
Plethora of recent literature have evaluated and proved frailty 
as a significant factor predicting post-operative morbidity and 
mortality [30,31]. Calculation of frailty is cumbersome and 
frequently involve need of additional evaluations and also, 
it’s a new domain for many practitioners. There are studies 
which found Metabolic equivalent (MET) to be association 
with frailty, which is an easily available data, based on 
exercise tolerance during preoperative history taking [55].

There is a defined co-relation between co-morbidities of 
patients and their post-operative morbidities and mortality. 
Among long list of co-morbidities, SMS model included 
CVA, CLD and COPD as most significant co-morbidities to 
be significantly associated with post-operative complications. 
Our set of data is unique in the sense that, it includes CVA 
(71), CLD (62), and COPD [72] according to strength of 
association, based of odds ratio derived during regression 
analysis. For keeping model simple and easily applicable, we 
did not grade or age adjust the comorbidities according to their 
respective severity as was proposed by Charlson et al [20]. 
Proper evaluation and management of each co-morbidity was 
done in pre-operative stage whenever possible.

For post-operative morbidity evaluation, we opted Clavien-
Dindo classification (CDC) [73], which is widely accepted 
modality for reporting of post-operative complications in 
surgical patients. As in our set of cohorts, variety of surgical 
procedure including upper Gastrointestinal surgery, Hepato-
pancreatico-biliary, peritoneal, retroperitoneal, splenic, 
small bowel and colorectal surgeries are included we defined 
post-operative CDC accordingly. Most common morbidity 
was in form of need of additional intravenous support in 
form of transfusion of packed red blood cell (PRBC) or 
fresh frozen plasma (FFP) and total parenteral nutrition 
(TPN). Some of the patient required additional cardiac 
medications in form of anti-hypertensive or rate control 
drugs or diuretics, all were classified to be included in CDC 
class 2. We defined severe morbidities as class 3a and 3b, 
for patients who needed secondary suturing, re-laparotomy, 
upper and lower gastrointestinal endoscopy, percutaneous 
drainage, pleural tapping or placement of intercostal drainage 
or angioembolisation etc. under local or general anaesthesia 
respectively. CDC 4a and 4b, were defined for patients with 

sepsis who required single organ or multi-organ support with 
vasopressors, ventilator, non-invasive ventilation, positive 
presser ventilations or dialysis due to any of the underlying 
complications respectively.

In development of SMS model, we used Univariate and 
multivariate regressions of various preoperative factors 
and odds ratio were derived for most significant factors. 
For checking reproducibility, derived score was applied to 
prospective data set and found to have acceptable validity. On 
basis of strength of association each significant factors were 
allotted simple scores and a simplified scoring model was 
drafted. This exercise was done for making model more user 
friendly without compromising its accuracy. This Simplified 
Max Score was then validated over entire cohort.

As data collected for evaluation of our patients were 
limited to most basics of pre-operative investigations, we 
compared SMS model with most widely used ASA model, 
available for our set of data in pre-operative assessment sheet 
(PAC).

ASA is the most widely available pre-operative tool, used 
in world for prognostication of patients pre-operatively. We 
compared our SMS model with ASA and found that SMS 
shows superior performance in predicting both morbidity and 
30 days mortality, comparing AUROC for both models, as 
shown in table 5. SMS in addition to being superior is also 
reproducible as it only uses objective data.

Various other studies have used different models like 
POSSUM, P-POSSUM, SRS and others and calculated 
AUROC for mortality prediction. Outcome of studies and 
models are compared in table 6 below.

A study of this table suggests that with 0.86 AUROC our 
model compares well with other established models with 
0.687 to 0.96 AUROC for mortality. Besides, our model 
uses simple 10-point score of routinely done preoperative 
investigations and assessments. For derivation of SMS 
model, we used retrospective data and all patients with 
missing data set were excluded from this study. Mortality in 
our cases is high as Max being a tertiary referral centre, all 
high-risk patients are treated here. Also, we have excluded 
cases such as Laparoscopic Cholecystectomy or hernia which 
have minimal mortality. Slight bias may also have been 
introduced by exclusion of missing data which could be due 
to better maintenance of the records in sicker patients. This 
could potentially, lead to interference in the results obtained. 
We tried to keep it to minimal by its validation on prospective 
data set as well.

Sample size for study, although calculated before starting 
of study is small as it is a single centre study done within a 
short time span. Much larger cohort and multi-institutional 
validation of model is required for generalised acceptance 
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of our model. We included both elective and emergency 
surgeries in our cohort with the aim to avoid complexity 
in model. Physiological reserve of patients, which can be 
assessed with co-morbidities and relevant physiological data 
in form of MET is equally efficacious for proper evaluation of 
the patients in elective as well as emergency setting.

We believe, SMS is simple model that can be used, not only 
for mortality but also morbidity prediction in post-operative 
period by using easily available pre-operative variables. Ten-
point format makes SMS a user friendly and easy score to 
apply with acceptable sensitivity and specificity. SMS can 
be beneficial at both institutional level and patient level 
as prediction of possible severe morbidities and mortality 
in operated patients. It helps surgeon in “shared decision 
making” [76], can help in preventing “failure to rescue 
events” [77], can act as useful guide for patient allocation to 
levels of clinical care.
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