
Research Article

Volume 6 • Issue 1 104 

Application of Digital Twin and Heuristic Computer Reasoning to Workflow 
Management: Gastroenterology Outpatient Centers Study
Marc Garbey1,2*, Guillaume Joerger1, Shannon Furr1

Abstract
The workflow in a large medical procedural suite is characterized by 

high variability of input and suboptimum throughput. Today, Electronic 
Health Record systems do not address the problem of workflow efficiency: 
there is still high frustration from medical staff who lack real-time awareness 
and need to act in response of events based on their personal experiences 
rather than anticipating. In a medical procedural suite, there are many 
nonlinear coupling mechanisms between individual tasks that could go 
wrong and therefore is difficult for any individual to control the workflow 
in real-time or optimize it in the long run. We propose a system approach 
by creating a digital twin of the procedural suite that assimilates Electronic 
Health Record data and supports the process of making rational, data-
driven, decisions to optimize the workflow on a continuous basis. In this 
paper, we focus on long term improvements of gastroenterology outpatient 
centers as a prototype example and use six months of data acquisition in 
two different clinical sites to validate the artificial intelligence algorithms.
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Introduction

This paper addresses the challenge of optimizing the quality and throughput 
of the workflow in a complex environment, such as surgical suites. 

As of today, medical staff working daily in a surgical suite are still struggling 
with obvious questions, such as: Why can’t we anticipate problems? Why is 
our utilization low? How can we effectively treat more patients? Our staff is 
stressed, they need more control, how do they get it? Why is the preparation 
of patients so slow? Why don’t we ever start on time? etc. [chapter 31 in [1]]. 

There is a very large number of publications on workflow optimization 
ranging from purely descriptive statistical methods to manufacturing industry 
process methods [2-4]. Recently, machine learning techniques, deep learning 
in particular, have gained traction [5].

However, there are few fundamental difficulties in the problem to be 
addressed that have limited the success of all these methods:

(i) The dataset comes from the Electronic Health Record (EHR), and the
quality and accuracy of the data might be highly questionable [7-9].

(ii) There is not a consistent workflow routine at the daily/monthly time
scale in healthcare:  conditions keep changing because of the population
of patient variability, large turnover of staff, and other external events
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(COVID-19, reimbursement drivers, and evolving tools/
processes). Consequently, the sample dataset one can 
work with for computational modeling is small by nature 
[10].

(iii) Every clinic or hospital might be different depending 
on staff, management models, and facility layouts: there 
might be no reliable global rules that apply nor one 
solution that fits all [11].

From a system science point of view, surgical flow in a 
large facility is a complex nonlinear system with multiple 
decision trees, multi-factorial processes, and interactions, 
which is further intensified and exacerbated by human factors 
between all involved “players.” Manifestly, it is only long-
term experiences in a specific surgical facility that helps a 
good manager of the floor to fully appreciate and anticipate 
problems in order to formulate and execute the right decisions 
for the management of a facility. Each facility has its own 
pace: one operating mode is usually not applicable to another 
facility as human behaviors, environments, and modes of 
operation are highly location specific [11]. An essential 
feature of our solution process is the construction of the so-
called digital twin of the clinic’s workflow. A digital twin is 
“a virtual representation that serves as the real-time digital 
counterpart of a physical object or process” and was first 
introduced for manufacturing processes by NASA to improve 
physical model simulations of spacecraft in 2010 [12].

The digital twin is fit to the clinic’s workflow with respect 
to the probability distribution of the main metrics (throughput 
and safety) that correspond to the focus of the management 
team. Upon it, we built a heuristic computational reasoning 
set of algorithms that act as a “What-if questioning virtual 
machine.” The resulting system is curious of what may go 
wrong or might be better based on previous observations and 
benchmarking. It continuously runs a multitude of scenarios 
using the digital twin in order to optimize the workflow [13-
15]. Now, managers and staff may combine their experiences 
with the recommendations provided by the heuristic computer 
reasoning algorithm exercising the digital twin analysis 
to make informed, data-driven decisions that have better 
chances of success.

The solution described in this paper concentrates on 
gastrointestinal (GI) procedural suites in outpatient centers 
as our prototype example [16]. This approach may apply 
to many categories of specialized procedural suites, from 
catheterization laboratory to ophthalmology, from orthopedic 
centers to bariatric centers, that share the same type of 
organized workflow with high volume routine procedures.

GI’s diagnostic laboratories are less complex than a 
general surgery floor that includes dozens of different types 
of procedures and has corresponding workflows with multiple 
paths involving medical imaging and biological labs. GI 

outpatient centers deliver two main categories of quick 
procedures: colonoscopy and EsophagoGastroDuodenoscopy 
(EGD). The patient workflow is a one-way linear graph, 
exhibiting standard workflow steps from registration to 
discharge and “rendezvous” points including the cycle of 
scope management - see figure 3. Thus, number of unknowns 
and independent variables in a digital model of an outpatient 
GI center are lower compared to a general surgical suite; 
however, (i) to (iii) still hold true in GI outpatient centers with 
multiple procedure rooms. For example, figure 1 and figure 2 
show the typical rate of error of EHR timestamps in a GI 
center and how it can relate to human fatigue throughout the 
day. Consequently, the problem of GI workflow optimization 
remains challenging with accumulating gain or loss at the 
minute scale. 

GI diagnostic procedures are usually short, about 20 
minutes for a colonoscopy procedure, 10 minutes for an EGD. 
Typical billing for these is about $1K if one weights Medicare 
volume with private insurance volume reimbursement. 
According to a John Hopkins report on infection rate after 
procedures, colonoscopy (respectively EGD) represents 
about 15 million (respectively 7 million) procedures per 
year in the USA in 2018. Advanced GI procedures involving 
therapeutic treatments can be longer and are less predictable: 
an Endoscopic Retrograde CholangioPancreatography 
(ERCP) might take between 30 minutes to 2 hours depending 
on the complexity, but the reimbursement is much higher than 
general GI procedures. The number of advanced procedures 
will continue to increase because the number of traditionally 
invasive procedures is decreasing to allow for minimally 
invasive procedures.

Hospitals handle GI diagnostics and GI procedures that 
are more complex, and declare difficult patient conditions 
relatively more than outpatient centers. This paper is 
focusing on outpatient centers, and we will present the digital 
twin of a hospital’s GI lab in a future publication [17-20]. 
The cost to run GI procedures has been increasing faster 
than reimbursement. Consequently, GI labs are interested 
in restoring their previous financial position by increasing 
throughput and/or lowering costs. Hence, they are not 
only interested in revenue. Because of the high turnover of 
nurses and providers, GI labs want to provide good working 
conditions within a well-run infrastructure to improve staff 
retention. GI labs may compete with each other to attract new 
patients. Patient satisfaction as well as quality of care are key 
criteria for patient retention and reimbursement rates. Patients 
expect to experience an efficient and caring workflow as well, 
so this also holds the potential of lowering the costs to treat 
patients and more robust finances for the clinic. In the next 
section, we will describe our general methodology to address 
the problem of workflow optimization in specialized medical 
procedural suites, starting from the digital twin concept with 
agent-based modeling [17,21,22].



Marc G, et al., J Surg Res 2023
DOI:10.26502/jsr.10020283

Citation: Marc G, Guillaume J, Shannon F. Application of Digital Twin and Heuristic Computer Reasoning to Workflow Management: Gastroenterology 
Outpatient Centers Study. Journal of Surgery and Research 6 (2023): 104-129. 

Volume 6 • Issue 1 106 

The digital twin may combine multiple models, may require 
the integration of heterogonous data sets, and may take into 
account human factors. There are similarities in the limitations 
of digital twin and computational model in general: both can 
be very inaccurate unless proved to be valid.  

One can refer to the quotation of George E.P. Box: 
“Essentially all models are wrong, but some are useful.” First, 
we design our digital twin to deliver adequate accuracy for a 
specific purpose. Our purpose for the digital twin of a GI lab 

Materials and Methods
We are going to first introduce the digital twin of the 

clinic’s workflow, which is the main computational engine 
of the workflow optimization technique used to support 
workflow management.

Digital Twin 
A digital twin is a virtual representation that serves as the 

real-time digital counterpart of a physical object or process. 

(a)   (b)

Figure 1: (a) Estimated volume of patients per procedure room per year in each outpatient center (rate of error is not correlated to volume). 
(b) Basic error detection rate based on missing entries or incoherent order of timestamps at each outpatient center. Other types of errors are 
possible but not counted here.

 
(a)         (b)

Figure 2: An example of the correlation found between clinical working hours and rate of error occurrence in two outpatient centers (a) and 
(b). The percentage of error represents the number of errors per hour weighted by the number of patients per hour in procedure room. The error 
rate increases during the morning with fatigue accumulation, marked with a pause at lunch time, and then increases again until the end of the 
clinical day.
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is to support the staff in anticipating workflow bottlenecks 
in their daily practice, assisting in root cause analysis of 
problems, guiding the manager to make strategic changes, 
and/or recruiting to improve workflow according to an 
objective function. Such objectives, without limitation, can 
be:

(i) increasing the number of patients processed during the 
clinic day, 

(ii) improving on-time workflow steps related to late starts, 
turnover, or overtime, 

(iii) improving quality by allowing each provider to spend 
enough time with patients. 

Every clinic may attribute a different weight to each of 
these three goals. Second, we refer to the Ockham's razor 
principle as reported in Albert Einstein’s famous quotation: 
“Everything [in a model] should be made as simple as 
possible, but not simpler.” A digital twin has intrinsically 
higher complexity than a model but should be made as simple 
as possible while still being “useful” to reach, in our specific 
GI application this is our workflow improvement objective. 
The more complex the digital twin is, the more input data it 
may need and the less these data might be accurate. A digital 
twin as complex as the clinical process would be and as 
unmanageable as the clinic process itself is.

Third, the quality of the model depends on the quality 
of the input data as stated in the popular quote “garbage 
in, garbage out.” This is very relevant to a digital twin that 
depends on a disparate input information, as it is intended to 

cover all aspects of the physical object or process. For our 
specific application, we need timestamps of workflow usually 
entered manually in the EHR system, scheduling information 
provided by a third-party software, team composition, some 
characteristics of staff behavior and performance. We use a 
simple mathematical framework to model human behavior 
affecting the multiple steps of the workflow from registration 
to discharge based on descriptive statistics of individual 
performances.

To build the digital twin of the GI lab, we start from a 
graphical representation of the workflow - see figure 3.  Each 
node corresponds to a step of the process. The arrows of the 
directed graph give the order of tasks in which they must 
be achieved. The patient arrives at registration and, once 
their information is entered into the EHR system, a nurse is 
ready to bring the patient to the pre-op area. Once the patient 
has been prepared for the procedure, the patient moves to 
the procedure room assigned to their provider. Inside the 
procedure room, the process generally starts with anesthesia, 
goes through the procedure itself and ends with the patient 
waking up (end of anesthesia). But different GI labs may have 
different practices in anesthesia with respect to possible start, 
respectively ending of the anesthesia work, in preparation 
unit (Prep), respectively Post Anesthesia Care Unit (PACU).  
If there is room available in PACU and a nurse ready to assist 
with recovery, the patient moves to PACU. They are finally 
discharged and leave the clinic if their ride is ready for patient 
pick up.

Every step is conditioned on the premise of availability 
of specific resources: (1) that the required staff are available 

Figure 3: Workflow of a Gastroenterology Clinic.
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to do the task and (2) the equipment is prepped and ready 
for the procedure. For example, the flexible scope processing, 
which is central to GI labs, has its own cycle and needs to 
be coordinated with the procedure steps as illustrated in the 
upper loop of figure 3.  

The design architecture of the digital twin is such that 
it can take the current global state of the clinic, including 
room state and key locations, and predicts what would be 
its state at a point later in time. The digital twin is not the 
end-result by itself; it needs to be set in a framework that 
can make it useful. Figure 4 describes how the digital twin’s 
computational engine is embedded into the architecture of 
a heuristic computer reasoning system used to support the 
workflow management goal.

To define the objective function of the digital twin, we 
are using a projection operator that computes the various 
metrics expressing operable efficiencies of the workflow. 
As often as needed, an optimization loop (see upper loop in 
Figure 4) fits the digital twin’s predictions to the observation, 
adjusting the free parameters of the model. This process is 
stochastic (randomly determined) since the prediction itself 
has randomness and the digital twin needs to be ran multiple 
times to generate statistics on real versus potential output. 
We use a combination of a genetic algorithm and a swarm 
algorithm to accelerate the convergence of the optimization 
algorithm [23]. Overall metrics of efficiency and safety are 
weighted according to the institution’s needs, under certain 
ethical constraints. For example, financial profitability of the 
GI lab should not be the only objective in the short term, since 

patient safety and satisfaction must be part of the objectives. 
In this aspect, the digital twin runs the forward scenarios 
multiple times, simultaneously adjusting specific control 
parameters through a multitude of defined ranges, to present 
to a manager or operator a framework of potential outcomes 
and endpoints from highest to lowest probability where 
distinct parameters are highly variable and heavily influenced 
by human inputs and interactions. Moreover, the system uses 
both current and historical data (as described above) in order 
to capture present data, compare current versus historic data 
and detect trends, when possible, of real-time and possible 
future workflows. The system uses multiple constraints in the 
optimization process (see lower loop in Figure 4) to take into 
account not only movements and activities of each variable 
(treatments, staff, equipment, and space) but also incorporates 
staff feedback entered through the interface, or changes of 
behavior observed through the sensors of the system, to serve 
the two-fold function of (1) enhancing the predictive value 
of the system while (2) ensuring that the system operates 
under admissible conditions in terms of ethical standards - 
each effecting potential outcomes and endpoints. A detailed 
understanding of the digital twin requires the construction 
of a mathematical framework that is provided in the [PCT/
US22/71608]. Next, we will describe the data sets that the 
digital twin of the clinic’s workflow requires for calibration.

Data Acquisition and Calibration of the Digital Twin
To calibrate the digital twin, we first collect timestamps of 

the workflow that are entered in the EHR system by medical 
staff. This is standard practice and does not require additional 

Figure 4: Architecture of our HERLAD System
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work. Table 1 describes this data collection. In addition 
to this series of 11-to-13 timestamps depending on how 
bidirectional endoscopy procedures (also called doubles) are 
entered in the system, we get an ID to track providers and 
staff and have consistency in our individual behavior model. 
Our algorithm is HIPAA compliant: the data set has been 
deidentified; specifically, we do not manipulate any patient 
protected health information (PHI) and we only receive a 
case ID to crosscheck data coming from the same procedure.

We also collect the schedule that has the time of the case 
as planned in the morning and procedure room number, as 
seen in table 2.

To calibrate the digital twin, we run the simulation of 
a clinical day, starting from the schedule of that day, and 
computing the sequences of events from the registration of 
the first patient to the last patient leaving the GI lab. In each 
run, we use the projection operators of Figure 4 to compute 
statistical distribution of interesting metrics for the GI lab’s 
management - such as overall time spent by the patient in the 
GI lab, turnover time, time of first case, etc.…

Each simulation alone are meaningless from a statistical 
point of view because the underlying discrete dynamical 
system is relatively small with a number of patients of the 
order of one hundred per day or less. We need to run each 
simulation of a clinical day enough times to get an overall 
distribution of these quantities close to convergence. The 

EHR data for a single clinical day suffers from the same 
limitation: the data set of a single clinical day is too small to 
produce a statistically meaningful estimate on turnover time, 
late start, overtime, etc. Consequently, the calibration of the 
digital twin is based on the fitting of these distributions on 
several days’ worth of data. In principle, the more clinical 
days the better, but the clinical conditions and infrastructure 
vary with time as well. We run the calibration of the digital 
twin on a time period of one month, at most, in order to limit 
the effect of staff turnaround. The optimization process’s 
search for the minimum of an objective function that is a 
weighted combination of the prediction accuracy on:

(i) Distribution of the overall time spent by the patient in 
GI lab – see Figure 5 and 6.

(ii) Distribution of turnover time – see Figure 5 and 6.

(iii) Distribution of first case of the day start time in each 
procedural room.

(iv) Distribution of last patient leaving the GI lab – see 
figure 7 and 8.

The objective function is constructed as follows: we 
compute the L2 norm of the difference between each 
distribution predicted by the digital twin and computed 
from the EHR timestamp data set. We normalized each of 
these error values by the L2 norm of the reference value. 
This produces a vector of four values per clinical day, 
one corresponding to each above criterion (i) to (iv). We 
average those vectors’ values over a time interval [0, Ͳ] that 
corresponds to every clinical day of the month. We take a 
weighted combination of all four entries of that average vector 
to get the function value to be minimized in the optimization 
process. This weighted combination can be decided as a 
function of what the management team likes to prioritize: an 
oversimplification would relate directly to staff satisfaction 
with (i) or productivity with (ii) and (iv), or staff satisfaction 
with (iii) and (iv).

The Formula (1) below summarizes the objective function; 
denoting D1 to D4 as each distribution listed above:

 ,   (1)

# Data Element from EHR Format
1 Procedure Scheduled Date & Time mm/dd/yyyy hh:mm

2 Procedure Room Number Text

3 Type of Procedure Text

4 Patient Name (or Case ID) Text (anonymized)

5 Provider (or ID) Text (anonymized)

6 CRNA (or ID) Text (anonymized)

7 Type of Anesthesia Text

8 Time: Admit/Front Desk hh:mm:ss

9 Time: Into Pre-Op hh:mm:ss

10 Time: Prep Complete hh:mm:ss

11 Time: Into Procedure Room hh:mm:ss

12 Time: Anesthesia Induction hh:mm:ss

13 Time: Procedure Start hh:mm:ss

14 Time: Procedure Stop hh:mm:ss

15 Time: Anesthesia Stop hh:mm:ss

16 Time: Out of Procedure Room hh:mm:ss

17 Time: Into PACU hh:mm:ss

18 Time: Ready for Discharge hh:mm:ss

19 Time: Out of Unit hh:mm:ss

Table 1: Information extracted from the HER

# Data Element from Schedule Format
1 Case ID (or element to crosscheck with EHR) Text

2 Procedure Scheduled Date & Time mm/dd/yyyy 
hh:mm

3 Procedure Room Number Text

4 Type of Procedure Text

5 Preferred Provider (or ID) Text 
(anonymized)

Table 2: Information required from the schedule
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To solve the minimization process that leads to the optimum 
parameter set up of the digital twin, we use the stochastic 
optimization technique. We do not have access to the gradient 
of the objective function, and the digital twin is a stochastic 
process as well as a reality of workflow in the GI lab. The first 
technique that comes to mind is a genetic algorithm that can 
come in different mathematical formulations. It might also be 
desirable to track the objective function in the many forms 
that can take the weighted combination of Formula (1), to let 
the GI lab decide what could be a priority: Finishing the day 
early? Starting on time? Taking care of as many patients as 
possible? 

We have run many scenarios and increased the robustness 
of our findings by keeping track of the objective function’s 

value using multi-objective results in every single evaluation 
of every stochastic optimization run. In the meantime, we 
found that a swarm algorithm can accelerate the convergence 
once the genetic algorithm has filtered out most of the 
parameter search space as non-competitive solutions [23].

At the end of this step in our method, a digital twin is 
constructed that is realistic enough to mimic any clinical 
day’s output of a specific GI lab with the same infrastructure 
conditions, in particular staff composition. This digital twin is 
specific to the GI lab for which we used the EHR data set. We 
can now use the digital twin to run many virtual experiments 
in an attempt to answer “what-if” questions for the GI lab. In 
other words, getting answers on why delays accumulate under 
specific circumstances [17] or what would be the benefit of a 

(a) (b)

Figure 5: GI Lab 2: comparison of the best fitted digital twin model of patients’ total time in the GI lab (a) and turnover overtime (b).

(a)           (b)

Figure 6: GI Lab 6: best fitted digital twin solution of patients’ total time in the GI lab (a) and turnover overtime (b).
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new management decision, for example, can be put to the test 
in a computer algorithm. We will describe that process in the 
next section as an Artificial Intelligent (AI) method.

Heuristic Computer Reasoning supported by the 
Digital Twin

We are proposing now a HEuristic Reasoning ALgorithmic 
Development (HERALD) system that can support and inform 
the manager of a medical facility and greatly improve their 
efficiency and the efficacy of implemented systems - see 
figure 5. 

The starting point to reproduce this “thought experiment” 
[24] in silico is to:

• Generate a certain subset within a domain of hypothesis 
or questions and

• Simulate and trial said subset by running a “digital twin 
simulation” of the clinical workflow that integrates all 
the specificities of the GI lab.

To start with an example, a large amount of work has 
been done in scheduling based on optimizing the number of 
procedures on patients that can fit in a preassigned time grid 
[25,26,27]. One may do some assumptions on how long a 
procedure with a specific provider takes, based on previous 
records. The optimization process considers the infrastructure 
at a coarse level such as number of rooms, number of beds, 
and is very mechanical in nature. From the mathematical 
point of view, the optimization algorithm must work with a 
landscape that has multiple local optimums, described by a 
very noisy set of parameters: the success of the prediction 
of how long it takes to complete a medical procedure is very 
limited because it depends on many unknown factors [28].

What we propose is to run the schedule with the digital 
twin and observe what happens. If an optimization process 
of the schedule has any chance of success it should at least 
take all the system components into account, including a staff 
behavior description that has statistical meaning and multiple 
nonlinear interactions between the peri-operative area and 
the procedure room suite. Coordination delays between these 
different working units are captured by fitting the digital twin 
to the reality of the GI lab by design.

Now one can ask: will the clinical day end on time, or 
do I need to reschedule a procedure in a different room? 
If the latter, what would be the best rescheduling for that 
patient? Answering such complex questions is usually done 
by a manager who “knows the place” from experience and 
uses some intuition. With our methodology, we propose to 
improve the probability of the decision being the correct/
best decision. To that effect, the digital twin simulation is 
running several simulations of the clinical day to predict the 
outcomes. Statistics on overtime or best room relocation is 
computed from that data set of outcomes and is delivered to 
answer the question of the GI lab’s manager. Trying many 
scenarios is a very heuristic way to answer questions, instead 
of a thought experiment that a manager does with intuition. 
It is an explicit algorithmic process that the computer can do 
systematically and quickly while considering all the known 
information entered in the digital twin. The decision might 
be only as good as the digital twin’s predictive capability 
is, but we enter here a rigorous process of validation that is 
well known in modeling. We will show in the results section 
specific examples of this in practice with true clinical data.

The architecture of the HERALD system is given in 
Figure 5. The best way to understand this representation is 

(a) (b)

Figure 7: In GI Lab 2, comparison of best fitted digital twin prediction of the end of the last procedure (a) and the end of the clinical day (b). 
The average difference is 34 minutes for the end of the last procedure and 29 minutes for the end of the clinical day.
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to show how this architecture can reproduce a digital version 
of “thought experiments” that are intended to structure 
“the process of intellectual deliberation within a specifiable 
problem domain” [14]. 

For convenience, we will take the classifications of Yeates 
[14] and illustrate each type of heuristic reasoning algorithm 
with an example of application on the surgical floor:

1. Prefactual: “What will be the outcome if event X occurs?”

• What if the janitorial team is aware of procedure room 
state in real time?

• What if the GI lab hires an additional anesthesiologist?

• What if Provider X is late by 30 minutes?

2. Counter Factual: “What might have happened if X had 
happened instead of Y?”

• What would have been the end of the clinical day in 
procedure room 6 if Provider X had been on time?

• It is usually understood that nurses are specialized in 
Pre-Op or PACU: what if half of the nurses can be 
knowledgeable about various situations and work in 
multiple areas?

• It is usually understood that a specific provider operates 
on their patient: what if a provider can treat any of the 
patients who have been scheduled? 

3. Semi-Factual: “Even though X occurs instead of Y, would 
Z still occur?”

We assume that the target Z is a component of the objective 
function:

• Even though Nurse Y could not provide a necessary 
component to a surgical operation in time, does Provider 
X still finish in time?

• Does productivity change with single-use scopes instead 
of reusable scopes?

• Does the end of clinical day depend on the speed and 
efficiency of the procedure room turnover?

4. Predictive: “Can we provide forecasting from Stage Z?”

• Can we predict the growth of revenue if we hire two more 
nurses?

• Can we predict the patient satisfaction rating change if we 
overbook by 10%?

• Can we predict end of the clinical day with high confidence 
at time X of the day?

• Can we predict at 07:00. which procedure room will end 
the clinical day late?

5. Hind Casting: “Can we provide forecasting from stage Z 
with new event X?”

• Can we assess how the next patients of procedure room 
5 will be delayed since procedure X may take Y more 
minutes?

• Patient Y has canceled, how much time of the day may 
Provider Z have free?

• Duodenoscope Y did not pass the cleaning test after the 
washing cycle, do we anticipate a shortage of scopes for 
the ERCPs coming? What effect does this have on time 
and efficiency?

6. Retrodiction: "past observations, events and data are used 
as evidence to infer the process(es) that produced them": 

• Procedure room 6 ended up finishing the day much later 
than expected, can we explain what were the main factors 
influencing the delay or delays?

• Patient satisfaction has been declining this month, can we 
find out why this is different from last month?

• There has been no more backflow around 11:00. in Pre-
Op, what has led to this positive change?

7. Backcasting: “moving backwards in time, step-by-step, 
in as many stages as are considered necessary, from the 
future to the present to reveal the mechanism through 
which that particular specified future could be attained 
from the present”:

• How early could we have predicted that procedure room 5 
would end the day late by 2 hours?

• How early could we have predicted that Provider X’s 
performance was impacting GI lab results?

• How early could we have anticipated to release the staff 
early, or altogether, from their duties for the day?

We have shown in [PCT/US22/71608], that we can 
provide a mathematical formulation for each of these types 
of questions. This mathematical formulation corresponds to 
the architecture described in Figure 5 and is amenable to a 
solution with standard numerical analysis algorithms well 
known in data mining and optimization. The quality of the 
answer depends on the quality of input data that the digital 
twin receives. Questions in classifications 1 to 5 use multiple 
runs of the digital twin forward in time either from a given 
state variable or a modified state variable or a set of variables 
in a fixed neighborhood of variation of a given state variable.

Questions in classifications 6 and 7 requires solving the 
inverse problem on the state variable prediction using an 
optimization loop.

Since the digital twin is stochastic, we provide a 
probability estimate of the outcome as follows: if the answer 
is a numerical value, we should produce the average and 
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standard deviation of the set of outputs corresponding to as 
many runs as needed to get within the confidence interval. 
If the answer is a discrete entity like “yes”, “no”, or “do not 
know”, we count the occurrence of each different answer from 
a large enough set of runs to get acceptable convergence.

A direct application of the process of digital thought 
experiments is to take action with predictive issue avoidance. 
HERALD first needs to automatically generate certain 
questions whereby the basic philosophy is to continuously 
investigate what may go wrong (and/or correctly) in order to 
bring remedies before an event even happens. For now, we 
may rely on a database of frequently asked question from the 
GI lab’s manager, but a further AI task is to generate the most 
relevant questions with an algorithm that mimics curiosity 
and learns from mistakes [29]. 

The system will then be able to ask the right question at 
the right time and give objective information to the manager 
on what will happen during the clinical day. Next, we will 
describe the results we have obtained with our method 
to understand workflow management improvement in an 
outpatient center [30].

Results
This section may be divided by subheadings. It should 

provide a concise and precise description of the experimental 
results, their interpretation, as well as the experimental 
conclusions that can be drawn.

Data Set of our clinical studies and Evaluation of 
unintended manual error input

We have collected data from six outpatient GI labs named 
1 to 6, over several months as summarized in table 3.

The volume of procedures per procedure room per year 
is shown in figure 1. It shows as stated in the background 
section (iii) that every GI lab has very different performances. 
Since we want to use this data set to calibrate the digital twin, 
we need to assess the quality of the data sets. It is important to 
notice that the rate of error in both data sets is not negligeable, 
see figure 2. 

To start, we observe missing entries in the EHR’s raw 
timestamps per procedure; second the timestamps can be 
out of order, which is impossible since the workflow must 
go forward in time from registration to discharge, except for 

(a)  (b)

Figure 8: In GI Lab 6, comparison of best fitted digital twin prediction of the end of the last procedure (a) and the end of the clinical day (b). 
The average difference is 40 minutes only 80% of the time.

GI Lab Name 1 2 3 4 5 6

Number of Procedure Rooms 7 3 3 2 2 7

Colonoscopy 6916 7339 5657 3261 1335 4848

EGD 1827 2299 2593 1792 794 1731

Double 1520 1945 891 161 404 1489

Time Period
Aug-Dec-2018 &

2019 2019 2019 2019 Aug-Dec-2019
Aug-Oct -2019

Table 3: Distribution of the number of patients present in the database for each GI lab analyzed. Each center has different number of procedure 
rooms and different distributions between the two most common GI procedures or a combination of the two (double).
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anesthesia that may start in Pre-Op and stop in PACU, not 
respecting the order of table 1.

This is not very surprising because all this information 
is entered manually by medical staff. Typically, nurses are 
focusing on their patients and, depending on conditions, may 
either forget to enter the timestamp information or enter it 
after the occurrence, a manipulation that EHR systems do not 
handle very well. We found as illustrated in figure 2 that 1 out 
of 5 procedure’s records is usually incorrect. Figure 3 gives 
some insight on the fact that manual entries are impacted 
by human behavior and fatigue. The error rates have the 
tendency to increase as the morning goes, decrease after the 
lunch break, to increase again as the end of the clinical day 
gets closer. 

There can be also a significant number of incorrect entries 
on procedure room number allocations in the schedule, about 
10% of these records are incorrect in GI Lab 6 and detected 
when there is overlapping times of procedure on different 
procedures in the same procedure room. Overall, as stated 
in the background section (ii), EHR entries have significant 
inaccuracy that make workflow optimization more difficult 
to achieve.

To overtake some of these limitations, we have 
implemented in two of the outpatient centers, with the largest 
volumes, a cyber-physical infrastructure that collects the 
workflow timestamps automatically. Most importantly, we 
acquire very accurate and reliable information on procedure 
start times and end times, by grabbing the endoscope video 
output in real-time to detect when the scope is active or not 
inside the patient or outside. We refer to our previous work 
published in [30] for more details. We observe that EHR 
timestamps of procedure start and end may shift task events 
by a few minutes randomly in 10% to 50% of cases. 

For comparison purposes, we use a second data set where 
the input entries on procedure timestamps are obtained by 
analyzing the endoscopic feed in real-time with our computer 
vision algorithm. This implementation was done only in GI 
Labs 2 and 6. This second data set has 1944 patient records 
in GI Lab 2 and 10412 patient records in GI Lab 6. We 
found that the techniques in our cyber-physical infrastructure 
implementation are more reliable than the manually entered 
EHR timestamps and capable of correcting many incorrect 
EHR entries [30]. This analysis confirmed the procedure 
room number errors as well. By looking at the start and end 
timestamps of procedures in the EHR and the ones from our 
computer vision solution, we can accurately reconstruct what 
happened in the procedure rooms and what the exact order of 
procedures was in each procedure room, see figure 11. This 
solution doubles in value as it also gives us more information 
on the scope usage than what can usually be found in the 
EHR system. In this second data set, however, manual EHR 

entries of perioperative timestamps are still used and suffer 
from similar inaccuracy than in the first data set of table 3. 

Finally, as noticed in the background section (ii), we have 
seen seasonal effects on the number of patients showing up 
for their medical procedure, and change in staff composition 
over the year, such that the clinical workflow performance 
may vary greatly from one month to the next. Next, we will 
present the calibration of the digital twin of GI Labs 2 and 6, 
where we have the most experience to interpret the results.

Result on the calibration od the digital twin
We found the optimization process, described in our 

methodology section, is robust provided that we run at least 
20 times each day simulation. The overall calibration process 
takes approximatively 12 hours on a standard PC desktop 
equipped with an Intel processor (11th Generation Intel i7, 4 
cores/8 threads with 16GB of RAM). We can accelerate the 
code via parallel computing: by running in parallel the set 
of parameters for each generation of the combined genetic 

Figure 9: Number of changes in the schedule per clinical day due 
either to cancelations, add-ons, or very late patient arrivals. 

(a)              (b) 

Figure 10: Optimizing rescheduling in real-time while making 
sure that patient will be done with their preparation in due time: (a) 
clinical day as it happens; (b) optimum rescheduling. 
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algorithm and/or swarm algorithm[32]. The speed up of such 
code is known to be close to optimal, i.e., the acceleration 
factor is close to the number of processors used.

As shown in figures 5 and 6, for GI Labs 2 and 6 
respectively, the digital twin reproduces turnover time with 
good accuracy. Turnover is defined here as the time between 
scope out of one patient to scope in of the next patient. Since 
we used our computer vision solution to detect these events, 
the distribution of procedure turnover time is accurate. 
Turnover is one of the most nonlinear output variables [17], 
since it depends on so many events such as patient is ready, 
provider meeting next patient in Pre-Op, provider meeting 
prior patient in PACU for discharge, scope ready, Certified 
Registered Nurse Anesthetist (CRNA) ready, etc.

The digital twin reproduces the overall time spent by a 
patient in the GI lab with satisfactory accuracy, see figures 
5 and 6. It should be noticed however that the EHR record 
gives unrealistic short time presence for some patients. In 
reality, it is impossible for a patient to get through the whole 
GI care process in less than 60 minutes. These EHR incorrect 
manual entries impact the distribution on the left side of the 
bell-like curve.

Late starts depend on many unknowns related to the 
clinical team, equipment preparedness, and other factors in 
external activity. We verified that the statistical model used 
in the digital twin to provide first procedure starts has the 
same level of relatively uniform randomness observed in the 

clinical data. We also found from simulation that this variable 
does not have lead impact on the validation. 

We found that matching the distribution of overall 
time spent by a patient in the GI lab (i) and matching the 
distribution of turnover time (ii) provides enough information 
to calibrate the digital twin. In other words, adding (iv) as 
an objective criterion does not make any improvement in the 
fitting. Therefore, (iv) can be used separately for validation.

Is the digital twin useful?
We have tested our digital twin against some of the 

questions heuristic computer reasoning may address. The 
first question is about predictive ability: can we provide 
forecasting of overtime? Can we predict at 07:00 which 
procedure room will end its clinical day late?

Figures 7 and 8 show the capability of the digital twin to 
predict the end of the clinical day for all patients, as well as 
the end of the clinical days for all providers. The prediction 
is significant if the error is less than 30 minutes, which is the 
standard duration of a block in scheduling. This prediction 
holds true only if the error rate on room allocation in the 
schedule is moderate, i.e., about 5% error. The result in GI 
Lab 6 is not very accurate, but if we restrict ourselves to days 
with less than 5% error on room allocation in the EHR record, 
i.e., 8 clinical days out of 21, we found that the prediction on 
end of clinical days has an average accuracy of 23 minutes. 
We expect that this prediction can be adjusted as the day 

Figure 11: An example during one day, in one clinic with 7 rooms, from 07:00 to 18:00 of output from the EHR data (black line with circle 
and triangle showing when the patient enters and leaves the room respectively) and from our computer vision systems (red and blue blocks 
showing when the scope (lower in red, upper in blue) is active; i.e., procedure is ongoing). The green arrows show when there is an error of 
room number and where the EHR timestamps should actually be.
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advances to help staff anticipate when they can leave the 
GI lab. We also indirectly tested our digital twin against a 
counterfactual question: What would have been the end of 
clinical day if cancelation rate were to drop to zero?

We run a simulation of the digital twin testing various 
cancelation rates virtually and observed the impact on the 
prediction of the end of the clinical day: we observed that 
a range of 2% to 8% cancelation rate has virtually no effect 
on the end of clinical day. To compare that finding to a true 
observation in the GI lab, we examine our data set with two 
different months that have similar workloads and different 
cancelation rates. We noticed that while the cancelation rate 
varies from 2% to 8% over these two months, the times for end 
of clinical day stayed about the same. The true observation 
of the GI lab is therefore similar to the “virtual observation” 
provided by the digital twin in the same range of cancelation 
rates. We interpret the result as follows: when cancelation 
occurs, one needs to reschedule the next patient(s) in real-
time; but to do so efficiently one needs first a real-time 
awareness on the workflow in the GI lab, second a very quick 
management decision and coordination with the various staff 
involved in the workflow. We found that those two conditions 
are difficult to achieve simultaneously in practice, with the 
current process of GI Labs 2 and 6 that both rely exclusively 
on manager experience and intuition.

We run a third test of a similar nature: what is the impact 
on the GI lab if patients spend 6 minutes less in the pre-op 
area? The rational for this question comes from our experience 
during the installation of our cyber-physical infrastructure 
in GI Lab 6. We influenced improvement in their workflow 
efficiency by installing a new graphical user interface in the 
pre-op area to increase awareness of the nurses and improve 
communication with busy providers. Over a one-month 
period, we observed a net decrease of the time spent by the 
patient in the pre-op area by 6 minutes. Eventually the GI lab’s 
throughput increased by 11% without increasing the total 
amount of hours worked by the staff [30]. The comparison 
between the two data sets before and after the 6-minute gain 
allowed us to test the heuristic computer reasoning algorithm 
addressing the following question: could we have predicted 
this improvement on throughput? It turns out that the digital 
twin predicted that the correct number of working hours freed 
by the 6-minute gain in pre-op allows the GI lab to take care 
of 10% more patients. Such a benefit seems very significant 
compared to what a 6-minute average saving per patient in 
preparation time seems to be. In practice, GI Lab 6 was very 
efficient to start with and initially managed to take care of 14 
to 15 patients per procedure room per clinical day. It is not 
surprising then that a small change in pre-op duration has a 
great impact on performance.

Retrodiction: can we detect what are the main factors 

influencing overtime?  This question is easier to answer in 
principle and can be addressed at first by a linear sensitivity 
analysis. Saving time in the pre-op phase seems to be the main 
factor, while saving time in the PACU phase comes second. 
The effect of accelerating turnover seems less important. We 
have unfortunately not been able to test these last two results 
against clinical data yet. It would have requested a change 
in staff performance that we have not been able to observe 
so far in our clinical study, and the result might be different 
from month-to-month as the GI lab improves its workflow 
components.

According to our initial findings, global prediction 
involving metrics on a large time interval, and therefore 
affecting many events and patients, seems to work well when 
the digital twin is calibrated on the EHR data for a monthly 
period. It is less clear to pinpoint the impact of specific 
individual behaviors during a clinical day. Examples such as 
the following questions would require accurate tracking of 
events during the clinical day and better manual entries: 

Prefactual: What if provider X is late by 30 minutes? 

Semi-factual: If colonoscopy duration of provider X has 
no more overtime, would that make a difference on overtime?

Hindcasting: Can we assess how long the next patients 
of procedure room T will be delayed since procedure X may 
take Y more minutes?

Any error in EHR timestamp entries or incorrect room 
allocation in the schedule specific to that individual event, 
would ruin the accuracy on the initial condition that the digital 
twin needs to run. Therefore, we are continuing to develop 
a cyber-physical solution that captures the perioperative 
workflow independently of the EHR system [30] to 
accompany our cyber-physical infrastructure presented in 
this paper. Its impact can be better understood by examining 
how a change of schedule is handled during a typical clinical 
day, as shown in next section.

Let us now discuss the potential use of the digital twin to 
improve scheduling as the clinical day progresses. We will 
present this result as a conjecture to open some perspective: 
our goal in a future publication is to get the acceptance of a 
GI lab to use the output of our new real-time rescheduling 
solution and check its efficiency. 

Conjecture
It is well known that schedules rarely go as initially 

planned in a surgical suite. This is also true for GI outpatient 
centers. Figure 9, for example, reports on the number of 
scheduled changes per clinical day over a period of one month 
in GI Lab 2.  In practice, a change in schedule is defined as a 
block being removed, a block being added, or a shift of one 
block by 30 minutes or more. 
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Scheduling in GI outpatient centers is a simple matter: 
the common practice is to allocate a block of 30 minutes to 
every patient no matter if it is an EGD, a colonoscopy, or 
both (double). The procedure is supposed to start at the hour 
or half past the hour. Figure 10 gives two examples of block 
scheduling in four procedural rooms, with one not being used. 
The scheduling on the left is the one implemented by the GI 
lab that day. Blocks are color coded according to the type 
of procedure: red for colonoscopy, blue for EGD, green for 
double. The two letters in each block identify the provider. 
Scheduling is often done manually or by software with 
additional manual entries. The first block of room 1 in the 
left, initial schedule of Figure 10 was unfortunately allocated 
to two different providers. This type of error may come 
from a late manual entry that did not update the scheduler 
properly. The visualization of the schedule is then incomplete 
with procedures being hidden behind others due to an error in 
room number or scheduled time of the procedure. This error 
usually delays the end time of the clinical day, forcing staff to 
work extended hours and possibly overtime.

Fixed block scheduling is common practice: all 6 outpatient 
centers that we have documented data from in Table 1 use the 
same scheduling assumption. It does not count for the fact 
that EGD procedures finish sooner than a colonoscopy and 
a double procedure would. It is true that this difference does 
not really matter, provided that there is a good mix of these 
three procedure types over the clinical day in a procedural 
room (one shorter procedure may compensate for another that 
takes longer). Still, the schedule hardly represents the reality.

Figure 12 gives a representative example of what happens 
in GI Lab 2 when decisions with rescheduling are made based 
on the intuition of the manager or any staff who may have 
a say. As we described earlier, our cyber-physical sensor 
(termed as our FES sensor) installed on the endoscopic video 
system allows us to have automatic timestamps on usage, 
state of scope (i.e., scope active, scope out but plugged, etc.), 
identification of scope reference number, and type of scope. 
There are instances where two different scopes are used during 
the same procedure. From this information consolidated with 
the EHR system, we create an accurate timeline of procedure 
room states – see figure 11. The classic order is the patient 
enters the room (black bar with a circle on the graph) then 
the procedure starts (red block for colonoscopy/lower, blue 
for EGD/upper) and last the patient leaves the room (black 
line with a triangle) - double procedures can be recognized 
as the quick succession of an active upper scope followed 
by an active lower scope. We can also compare this timeline 
corresponding to the true procedural room utilization with the 
timeline corresponding to the block scheduling of that same 
procedural room as initially scheduled before the clinical 
day started. By overlaying these two timelines, following a 
logical order and matching start and end of procedures, we 

can visualize when there is a match or difference between 
block allocations, as exemplified in Figure 12. Differences 
can be of different nature: (i) missing procedure in the EHR, 
(ii) different order of procedures and last, but not least, (iii) 
wrong room number. To point out these differences with 
accuracy, we have shown on the right of Figure 12, the initial 
schedule at the beginning of the day with 30-minute block 
allocation per patient. According to the initial schedule, in 
Room 1 provider ‘NC’ is supposed to have 10 colonoscopies. 
The reality was different, first another provider called ‘MF’ 
had one procedure in this room that day. This colonoscopy 
was scheduled but scheduled for the same time as NC’s 3rd 
colonoscopy at 09:00. NC performed 12 procedures that day 
instead of the 10 according to the initial schedule. Indeed, 
two other procedures, an EGD and a double, were scheduled 
at the same times of two colonoscopies (one at 13:30 and one 
at 14:00). Because of this, the staff in this room finished at 
15:30 rather than at 14:30. A similar event happened in Room 
3, with provider DH having one EGD and one colonoscopy 
scheduled at 10:00 making the colonoscopy named ‘DH8’ 
on the timeline start at 12:15 instead of 10:30; overall DH 
is finishing the day one hour late as well. One can wonder, 
for example, why MF did one procedure in Room 1 while 
there were free blocks available in Room 4 where MF’s 
other procedures took place. Now, we will present a software 
solution to achieve rescheduling in real-time that can be tested 
with the digital twin prior to making any decision in order to 
avoid missing opportunities in procedural room allocations.

As a first example, figure 10 shows the schedule as it 
was executed on the left and the schedule that our real-time 
rescheduling software would suggest on the right. We will 
describe first the algorithm and second the benefit according 
to the digital twin simulation.

To improve the rescheduling in real-time, we first need 
to consider when the patient registers: there is no point to 
schedule a procedure and assign it a room unless one makes 
sure that the patient has plenty of time to go through the 
registration process and the pre-op phase before moving 
to the procedure room. We reorder patients in the schedule 
from the same provider to satisfy this constraint. Second, no 
matter how early a patient may show up, it is not generally 
accepted to ask the provider to start the day earlier. We 
conclusively impose the same start time of the clinical day 
in each procedure room as it is listed in the initial schedule. 
Third, we privilege the solution where a provider stays in the 
same procedure room to minimize loss in time due to moving 
from one place to another. It is relatively simple to use a 
standard bin-packing algorithm to build the schedule with 
only three procedure rooms [33]. As the number of procedure 
rooms increases, the algorithm may fail. One usually runs the 
search algorithm several times and produces several solutions 
that are local optimum of the optimization problem. In the 
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Figure 12: An example of missed opportunities during the rescheduling on a given clinical day and representation of the impact of double 
booking on the same block. The blocks with initials in them represent the scheduled time of procedure, following a 30-min block scheduling 
rule. The red and blue blocks behind them are the output of our computer vision system (like in Fig. 11) and shows the real time of start and 
stop of the endoscopic procedure. The orange arrows show when there is a large difference between the initial schedule and the reality.

Figure 13: Impact of optimum rescheduling over a month based on 
end of clinical day in each of the three procedural rooms, according 
to the digital twin.

example of Figure 10, one can conclude visually that the 
rescheduling improves the usage of each procedure room and 
should improve the rate of room occupancy. A rational way 
to choose the best solution would be to use the digital twin 
simulation output to look at multiple factors, such as turnover 
performance, overtime, end of day prediction, and patients’ 
and staff’s satisfaction.

To test this hypothesis, we have applied our real-
time rescheduling virtually over a period of one month 
corresponding to the data set used to plot figure 7. The result 
we found is summarized in figure 13. According to this graph 
obtained with the digital twin, one can add about 5 procedures 
per day, with no change on scheduled start time of providers 
and neither assuming any increase on performance of the staff 
since the parameters that define the digital twin have been 
fixed. A quick estimate predicts that it would be possible to 
add 100 more patients per month without increasing the end 
time of clinical day neither the number of staff, which should 
result into an increase on gross revenue of about $100K per 
month. However, the validation of this rescheduling method 
needs to be tested out in true clinical conditions carefully 
and is the goal of another future publication. Next, we will 
discuss our results and conclude our study.
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Discussion
We have concentrated our study on understanding how 

optimization of workflow in GI outpatient centers can be 
achieved. This is an important problem to solve: according 
to the Beckers Healthcare 2019 report [34], GI endoscopies 
make up for 68% of all endoscopies in the U.S., and GI 
procedures are estimated to grow at a 2.6% compound annual 
rate, driven by the increased aging demographics and growing 
prevalence of GI-related conditions.

While the workflow in GI labs is much simpler than 
in multi-specialty hospitals, we found that workflow 
optimization is still an unsolved problem for the most part, as 
illustrated by the ASGE benchmark report [11]. Every GI lab 
was developed under different healthcare environments and 
standards. The GI outpatient center market is going through 
a strong phase of consolidation and merging [35] that gives 
hope for a more systematic way to establish a standard of 
optimum workflow and safety. However, it is difficult 
to generalize a solution that is intended to work for all GI 
labs. Besides, the data used to understand the problem come 
essentially from the EHR of the GI lab that can include a 
multitude of software platforms with poor interconnectivity: 
not only may the data be difficult to reconciliate but as shown 
in our study data may come with a high rate of error too.

To render the process of data collection unbiased and 
automatic, one may argue that a cyber-physical infrastructure 
like the one we developed in [30] might be a solution. 
However, we still need a solution to answer the most 
frequent questions of workflow optimization that are asked 
by managers and staff. Some, for example, were listed in 
our methodology section. Answering these questions in real-
time to assist the management’s decisions might be difficult 
with today’s EHR data input quality. We have shown that 
the ability to predict the end of the clinical day with our 
digital twin model is feasible if the rate of error in the initial 
schedule is low.

Some more fundamental questions on strategy and resource 
allocation that rely on a larger data set, which looks at many 
days of past activities and prospects of new management 
solutions, might be easier to deal with. Unintended manual 
entry errors add random noise with unbiased distribution. For 
example, we found that the time shift on procedure start and 
end times due to manual entry approximations had no bias 
that would favor early or late timing.

Conclusions
Rather than using machine learning or deep learning 

methods that extract patterns in workflow timestamp data, 
we have chosen to use a digital twin of the GI lab that 
implements a priori knowledge on how workflow is bounded 
and should operate. This type of heuristic computer reasoning 

may deliver an explanation about why things turned bad as 
opposed to pure observation. For example, we were able to 
test the influence on preparation time of patients and show 
how it can be a major bottleneck on patient workflow in a 
GI lab that was otherwise fairly efficient. We were also able 
to verify that preparation time can be improved without 
impacting the PACU phase later down the workflow path. 
The same result would not hold true in a GI lab that has very 
poor coordination between staff in each phase as reflected in 
the study of the rescheduling in real-time by the digital twin 
simulation.

Another limit of standard AI algorithms in machine 
learning and deep learning applications might be in the size 
of the data and the error rate. A standard facility that treats 
about 1000 patients per month gives only 12K data points 
with a 10% to 20% error rate, at least. Unless one combines 
several centers’ data sets with the same exact infrastructure 
and number of shared staffs, the data set may remain far 
too small to support standard AI methods. On the other 
hand, the digital twin needs the adjustment of a few dozen 
of parameters at most, which seems easier to achieve with a 
stochastic optimization algorithm that naturally filters out the 
noise in the data set and gives useful results as seen in our two 
GI labs examples.

There are still strong limits to our methods. There might 
be numerous sources of singular events either due to the 
peculiar behavior of some individuals or some hidden rules 
related to staff scheduling and rotation that might be missed 
in the digital twin. Continually comparing the outcome of the 
digital twin with the realizations of the workflow in the GI 
lab on a regular basis may help to resolve these difficulties. 
It seems that on-site GI lab visits done in collaboration with 
a human factors team would be the ultimate way to improve 
and validate the system further. We will report on this activity 
in a later publication. Improving data input in our model both 
in quality and in finer time scales might also be important as 
the technology matures.

Finally, we would like to observe that the same framework 
might be implemented in other clinical workflow specialties 
such as ophthalmology in “laser eye surgery clinics”, or 
minimally invasive vascular intervention in catheterization 
laboratory. Each of these workflows share the same features 
as seen in GI: the workflow path is well defined from 
registration to discharge, medical staff all along the workflow 
path of the patient have well defined healthcare to deliver, 
procedures are relatively standard and short in time. From 
the mathematical point of view, the optimization workflow 
problem is “well posed”: our methodology applied to GI 
outpatient centers should be an effective tool to advance the 
field in these other clinic specialties. Our goal is to provide 
a tool that can inform data-driven decisions to improve both 
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efficiency and safety in similar centers and improve our basic 
knowledge of what is the optimum path for the patient.

Patents
PCT/US22/71608 has been submitted “Architecture of a 

Heuristic Computer Reasoning System” on 04/07/2022.
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Digital Twin and Heuristic Reasoning

Abstraction

1 Mathematical Framework

We introduce the following mathematical framework to implement the digital twin and
algorithm of heuristic experimental reasoning:

• �S(t) state of the system at time t.

• �S(t) + ∆�S(t) new event that updates state variable at time t.

• �C(t) control variable at time t.

• �C(t) + ∆�C(t) new change on control variable at time t.

• Observation that tracks the state variable evolution in time for a given control
variable:

O(∆t) : (�S(t), �C(t)) −→ �S(t+∆t)

• Simulation algorithm that predicts the state variable evolution in time for a given
control variable.

S(∆t) : (�S(t), �C(t)) −→ �S(t+∆t)

• Projection of the state into the objective value space is denoted

P : �S(t) −→ �P (t)

The projected value is a multidimentional vector (P1, ..., PN ).

• The objective function is the weighted norm:

||�P ||ω = ||(ω1P1, ..., ωNPN )||, where ωi ≥ 0, i = 1..N

• Measure of the difference between realization and simulation on objective value:
||E(∆t)( �S(t), �C(t))|| = ||P(O(∆t)( �S(t), �C(t))− P(S(∆t)( �S(t), �C(t))||

• continuity of error estimate with respect to state variable:

|E(∆t)( �S(t), �C(t))− E(∆t)( �S0(t), �C(t))| ≤ κ(S0)||S(t)− S0(t)||

where κ(S0) denotes a real number that depends only on the state value S0.

APPENDIX
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• continuity of error estimate with respect to control variable

|E(∆t)(�S(t), �C(t))− E(∆t)(�S(t), �C0(t))| ≤ χ(C0)||C(t)− C0(t)||

where χ(C0) denotes a real number that depends only on the control value C0.

Let us describe the state variable of the GI workflow:

State Variable:

We keep track of the four following components of �S that are respectively procedure
state, procedural room state, patient state and medical equipment state; Table 1 gives in
each column an example of the meaning of each state value component corresponding to
a GI lab. We define Sj , j ∈ (1..4) to be the row number that corresponds to the state of
that component.

Table 1. procedure state, room state, patient state and endoscope state

row # Procedure Room Patient Scope

1 No Scope Empty not arrived in storage

2 Scope Plug Busy at registration Transport to Procedure Room

3 Scope In Cleaning in Prep in procedure room

4 Scope Out in Procedural Room x Transport to Tech room

5 in Pacu Hand Wash

6 Discharge Washing Machine Cycle

7 Left the clinic Drying

We may fill up some additional row in this table with more detailed work flow steps
on demand. We can also have additional vector components to capture other dimensions
of the workflow. For example, we download relevant information on weather forecast and
traffic condition to estimate the impact on inflow/outflow of patients in an outpatient
center. We can keep track also of the mental state of staff by analyzing behavioral data
such as response to text messaging, usage of touch screen, impact on task time line after
text messaging, etc... We refer to the foundation work of Rosalind Picard on affective
computing [8] for that purpose.

Control variable: Control variable are referring to the resources of the infrastruc-
ture allocated to the workflow: �C has the number of staff in each category, number of
procedural room open, number of scope available for each category, number of stretchers,
information sent etc...

The manager controls these variables within specific boundaries: for example, the
manager may decide on the number of nurses allocated to prep and pacu based on the
schedule load. To save on infrastructure cost, the manager can close one procedure room
for half a day, if the number of procedures scheduled at that time allows it.

Projected Value The outcome of the workflow is evaluated as a function of: turnover
time between procedures, time spend by the patient at each stage of the workflow, eco-
nomic output based on reimbursement and cost of infrastructure and staff, overtime,
quality of service based on clinical outcome, etc... For each of these fields one may look
at average value, standard deviation over a period of time. Each of these numbers can
be weighted out to define a multi-objective function ||�P ||ω, that we named the objective
value.
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Description of Workflow and Abstraction with a Model

The workflow is described by a directed graph G illustrated in Figure 3.

Each node of the graph represents a step of the process or a task.

The task advances in time provided all conditions to start that process step are met.
Those conditions are linked to patient state and depend on specific resources such as staff
or equipment required for that step of the workflow. For example to start the procedure
one needs to have the patient in the procedural room, he/she should be under anesthesia,
the medical team should be ready, and the correct equipment, scope for endoscopy for
example should be plug in. An Agent-Based Model (ABM) implementation [1] [5] [3]
takes into account all these constraints if any and manages the spatio-temporal behavior
of agents, i.e patient, staff, key pieces of equipment.

The task is a process with a duration that needs to be described. One uses a variety of
models such as a probabilistic one that gives the duration once and for all, or a dynamic
process that depends on a number of external factors including team performance.

The probability model uses a probability distribution that could be modulated by
patient comorbidity and team past performance.

A dynamic modeling process with an ABM may use a set of discrete differential equa-
tions as in [3].

The progression T̃ of the task k for the agent i, noted T i
k, from 0 to 1 is described by

an ordinary differential equation with the right hand side depending on the team skills.
T̃ is set to 0 if the task is not completed, i.e. 0 ≤ T i

k < 1, and 1 otherwise. M is a sparse
matrix that corresponds to the directed graph of Figure 3. The master equation that
provides the time evolution of the state of the graph of tasks {T i

k} handled by the team
Si that advances the task Tq at time step q is:

T̃ (tq+1) = [M × (T̃ (tq))] ◦ [(G(tq − t0))Si.Ek]. (1)

Here × denotes the sparse matrix vector product, and ◦ the vector product component-
wise, and . the product of a vector by a scalar.

The ABM model has three components:

• M × (T̃ (tq)) where M is a sparse matrix that expresses the dependency on previous
tasks.

• G(tq − t0)Si reflects the time-dependent progression of the individual task.

• 0 ≤ Ek ≤ 1 is a positive factor representing a penalty for the environment conditions.
It may represent the limitation resulting from shared equipment or specific overload of
the GI lab due to epidemic or crisis.

In case of multiple paths coming out from a specific node in the workflow graph, as it
would be the case for a GI lab in a Hospital environment, the path is activated according
to a probability law or conditional probability similar with a Bayesian process.

Implementation of the Digital Twin To go from the model to a digital twin one
needs to fit the model to the observation in such a way that it can support heuristic
computer reasoning. We will refer in the following to the overall architecture of Figure 4.



Marc G, et al., J Surg Res 2023
DOI:10.26502/jsr.10020283

Citation: Marc G, Guillaume J, Shannon F. Application of Digital Twin and Heuristic Computer Reasoning to Workflow Management: Gastroenterology 
Outpatient Centers Study. Journal of Surgery and Research 6 (2023): 104-129. 

Volume 6 • Issue 1 125 

The underline model can be as simple as a Markovian process such as in [4] or an
ABM as in [3] in this paper. Each probability law or discrete differential equation have
generic construction relying on parameters. For example the shape of the distribution is
given by its moments. The discrete differential equation ( 1) has coefficients.

Let us denote �α = (α1, ...., αn) the n set of parameters defining the model. This set
of parameter can include indicator of each provider and its team performances as well as
duration of processes as a function of the distribution of staff in the peri-operative area.
To build a digital twin of the workflow, the unknown vector parameter �α is obtained
by fitting the model output to the observation; the fitting is solution of a (stochastic)
minimization process as in [3, 7, 4]:

min�α||E(T )(�S(t = 0), �C(t))||

for a set of initial condition �S(t = 0), known control conditions �C(t)) and duration T.

In our notation the digital twin gives the simulation operator:

S(∆t) : (�S(t), �C(t)) −→ �S(t+∆t).

The predictive capability of this operator is essential to the success of computational
heuristic reasoning; For robustness one has to:

• verify in real time that the digital twin runs properly and sends alert and/or makes
correction automatically based on redundancy of input channel of information.

• double check the digital twin prediction off line to prevent errors due to delay in
communication feed of input channels.

• verify and validate the prediction against observation by computing ||E(T )(�S(t =
0), �C(t))|| .

• calibrate as needed the digital twin with the minimizing process as described above.

• exercise heuristic reasoning as described in the next section to support the decision
of the manager:

- in the short time scale (that requires restarting the digital twin in the middle
of the day with hybrid inputs from EHR and sensor data)

- in the long time scale that can start form a clean initial state before clinic
start.

The digital twin uses a data base of observation with a large number of clinical days
and time range that keeps track of all input channels. This set should be chosen in such
a way that there is no under fitting, i.e the number of parameters to recover is much
less than the number of conditions, and the workflow operates essentially with a stable
infrastructure.

If the infrastructure changes a lot because of new providers coming in or providers
leaving or new generation of equipment, etc... the digital twin needs to be fitted again.
This can be done implicitly by monitoring if the prediction quality deteriorates with time.
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In our method the digital twin is continuously fitted and the �α evolution can be
interpreted as a learning process that catches changes in the infrastructure or evolution
of the behavior of staff.

Decision are made through the change of the control variables �C(t) + ∆�C(t).

Those changes should be bounded by ethical principle, i.e. admissible behavior, i.e
admissible uses of the infrastructure

∀j, Cj ∈ [Cmin
j , Cmax

j ],

assuming continuity of error estimate with respect to control variable.

For example, there should be an upper limit on patient wait at each stage, or on
overtime of staff.

Note: the Cj bounds may evolve as a function of the state variable that addresses
staff/patient mental state or patient outcome, or specific environmental condition like a
pandemic.

Let us described next how our mathematical framework makes heuristic reasoning
that mimics thought experiments [2, 9] amenable to known optimization and data mining
algorithm.

2 Mathematical Formulation of digital thought experiments
using the classification of Yeates’s 2004

Prefactual: ”What will be the outcome if event X occurs?”

The abstract formulation of event X is a sudden change of the state variable �S, denoted
∆�S. The mathematical formation of this question is

P(O(∆t)(�S(t) + ∆�S, �C(t)) ?

The algorithm to answer that problem is based on a forward digital twin run:

P(S(∆t)(�S(t) + ∆�S, �C(t))

Counter Factual: ”What might have happen if X had happened instead of Y?”

The mathematical formulation of this question is the same as above provided that ∆�S
denotes the difference on the state variable between the sudden change of state variable
switching from event X to event Y.

Semi-Factual: ”Even though X occurs instead of Y would Z still occurs?”

Let’s assume that event Z corresponds to the j component of the projected value in
the objective space. Using ∆�S defined as above, the mathematical formulation of this
question would be:

Pj(O(�S(t) + ∆�S, �C(t))− Pj(O(�S(t), �C(t)) = 0 ?

We answer this question by substituting the digital twin simulation to the observation.
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Predictive: “Can we provide forecasting from stage Z?”

To formulate this question in a more rigorous way, we need to specify how further in
time we like this prediction to be , i.e set ∆t, and how accurate should be this prediction
to be valuable. Let’s assume �ε to be the tolerance for an admissible prediction value in
the objective value space. The mathematical formulation of the question is:

∀j ∈ (1..N), |(E(∆t)(�S(t), �C(t)))j | < �εj ?

If this inequality is satisfied the prediction is correct for each component of the objective
function. On one end, we check that inequality comparing observation with simulation
and starting from some specific state value in the region of interest. On the other hand,
we use the continuity of the error estimate with respect to state variable and this past
observation to answer that question for any state values closer enough to S(t).

Hind Casting: ”Can we provide forecasting from stage Z with new event X?”

This question is no different than the previous one except it applies to �S(t) + ∆�S
where ∆�S stands for new event X:

∀j ∈ (1..N), |(E(∆t)(�S(t) + ∆�S, �C(t)))j | < �εj ?

We use the same learning process from past experience described above to handle that
problem.

Retrodiction: ”past observations, events and data are used as evidence to infer the
process(es) that produced them”

We start from a past observation:

O(∆t)(�S(t−∆t), �C(t−∆t)) = �S(t)

that has been tracking the state variable evolution in time for a given control variable.
We verify that the model has been predictive:

∀j ∈ (1..N), |(E(∆t)(�S(t−∆t), �C(t−∆t)))j | < �εj

We assume that the error estimate is continuous with respect to the state variable.

The mathematical formulation of retrodiction can be done in many different ways
depending on the level of causality we are looking for. In its simplest form, we look for
the variable component that changes significantly the outcome, i.e.

Find j ∈ (1..N), such that |(E(∆t)(�S(t−∆t) + ∆�S(t−∆t), �C(t−∆t)))j | >> �εj ?

This problem is amenable to standard optimization techniques.

A more sophisticated analysis would involve a non linear sensitivity analysis on all
potential events or combination of events represented by ∆�S in a neighborhood of �S, to
be define.

Backcasting: ”Moving backwards in time, step-by-step, in as many stages as are
considered necessary, from the future to the present to reveal the mechanism through
which that particular specified future could be attained from the present”
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The mathematical formulation of that question can be derived from the above one;

For example let’s assume that

∀ j ∈ (1..N), |(E(∆t)(�S(t−∆t) + ∆�S(t−∆t), �C(t−∆t)))j | < �εj ?

One can move one back step further to identify an event that would change the outcome:

Find j ∈ (1..N), such that |(E(2∆t)(�S(t− 2∆t) + ∆�S(t− 2∆t), �C(t− 2∆t)))j | >> �εj ?

or repeat the process backward in time until such event exists. This would assume that
the validity of the prediction holds for that many time steps backward, i.e.

|E(n∆t)(�S(t−n∆t), �C(t−n∆t))−E(n∆t)( �S0(t−n∆t), �C(t−n∆t))| ≤ κ(S0)||S(t)−S0(t)||,

where n is the number of back steps ∆t involved and S0 is the state variable in the region
of interest for the state of variable in the backward analysis.
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