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Abstract
Coronavirus disease 19 (COVID-19), currently prevalent worldwide, 

is caused by a novel coronavirus, severe acute respiratory syndrome 
coronavirus 2 (SARS-CoV-2). Similar to other RNA viruses, SARS-
CoV-2 continues evolving through random mutations, creating numerous 
variants, including Alpha, Beta, and Delta. It is, therefore, necessary to 
predict the mutations constituting the dominant variant before they are 
generated. This can be achieved by continuously monitoring the mutation 
trends and patterns. Hence, we sought to design a dominant variant 
candidate (DVC) selection algorithm in the current study. To this end, we 
obtained COVID-19 sequence data from GISAID and extracted position-
nucleotide (POS-NT) frequency ratio data by country and date through 
data preprocessing. We then defined the dominant dates for each variant in 
the USA and developed a frequency ratio prediction model for each POS-
NT. Based on this model, we applied DVC criteria to build the selection 
algorithm, which was verified for Delta and Omicron. Using Condition 3 
as the DVC criterion, 69 and 102 DVC POS-NTs were identified for Delta 
and Omicron an average of 47 and 82 days before the dominant dates, 
respectively. Moreover, 13 and 44 Delta- and Omicron-defining POS-NTs 
were recognized 18 and 25 days before the dominant dates, respectively. 
We identified all DVC POS-NTs before the dominant dates, including 
rapidly and gently increasing POS-NTs. Considering that we successfully 
defined all POS-NT mutations for Delta and Omicron, the DVC algorithm 
may represent a valuable tool for providing early predictions regarding 
future variants, helping improve global health.

Abbreviation:
BAM Binary alignment/map
COVID Coronavirus disease 19
DVC Dominant variant candidate
GISAID Global Initiative for Sharing All Influenza Data
POS-NT  Position-nucleotide
SAM Sequence alignment/map
SARS-CoV-2 Severe acute respiratory syndrome coronavirus 2

Background
The recent Coronavirus disease 19 (COVID-19) pandemic, caused by 

the novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) 
virus, has had severe implications worldwide. Continuous mutations in the 
genome generate new variants, enabling the virus to thwart disease control 
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measures. Next-generation sequencing technology is widely 
employed to characterize the genetic SARS-CoV-2 variants. 
Owing to the contributions of many researchers, SARS-
CoV-2 genomic data has been collected from infected 
individuals worldwide. GISAID is a database that stores 
and provides sequenced SARS-COV-2 genomes along with 
basic metadata, including the sequencing date and location. 
GISAID also visually presents the status of SARS-CoV-2 
variant spread in a geographical and time-dependent manner. 
In particular, predicting the emergence of a novel variant 
is critical to identifying new potential outbreaks capable of 
evading the current diagnostic and vaccine strategies. 

In this study, we provide a prediction model that estimates 
whether a single SARS-COV-2 mutation is a prominent factor 
in determining disease severity in infected patients. This 
functionality is helpful in disease control in several aspects. 
First, single mutations may be associated with known clinical 
characteristics, such as symptom severity, incubation period, 
and morbidity rate. Second, mutations in PCR primer binding 
regions can be used to estimate if an infectious virus evades 
diagnostic methods. Third, single mutations help assess the 
vaccination efficacy of the designed epitope.

SNPs defining Delta and Omicron variants
Based on the WHO nomenclature system (GISAID, Pango 

lineage, Nextstrain clade): Alpha (GRY, B.1.1.7, 20I (V1)), 
Beta (GH/501Y. V2, B.1.351, 20H (V2)), Gamma (GR/501Y.
V3, P.1, 20J(V3)), Delta (G/478K.V1, B.1.617.2, 21A-21I-
21J), and Omicron (GR/484A, B.1.1.529, 21K-21L-21M-
22A-22B-22C-22D) (WHO: https://www.who.int/activities/
tracking-SARS-CoV-2-variants) SARS-CoV-2 strains have 
arisen due to mutations in the genomic sequence. The SARS-
CoV-2 genome comprises 29,903 nucleotides, encoding 
12 proteins (ORF1a/1ab, S, ORF3a, ORF3b, E, M, ORF6, 
ORF7a, ORF7b, ORF8, and ORF10*). These mutations 
are caused by single nucleotide changes, i.e., replacement, 
insertion, or deletion, leading to changes in the amino acid 
sequence (Fig 1; GISAID: https://gisaid.org/). Figure 1 
presents a genome sequence map of SARS-Cov-2 and the 
major mutational positions of several variants. In this study, 
we attempted to predict the Delta and Omicron variants, i.e., 
the most recent dominant SARS-CoV-2 variants. According 
to Pango (Pango cov-lineages: https://cov-lineages.org/), the 
Delta and Omicron variants have 13 and 47 defining SNPs, 
respectively (Tables 1 and 2).

Figure 1: SARS-CoV-2 genome sequence map. The 29,903 nucleotide positions are shown in the context of the 12 encoded proteins. The main 
mutations of each dominant variant are shown; pink: Alpha mutation, green: Delta mutation, blue: Omicron mutation.

https://www.who.int/activities/tracking-SARS-CoV-2-variants
https://www.who.int/activities/tracking-SARS-CoV-2-variants
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Amino acid Nucleotide

1 T19R C21618G

2 T478K C22995A

3 L452R T22917G

4 D950N G24410A

5 P681R C23604G

6 D377Y G21987A

7 S26L T26767C

8 I82T T27638C

9 V82A C27752T

10 R203M C25469T

11 T120I G29402T

12 G142D A28461G

13 D63G G28881T

Table 1: Delta defining position-nucleotides. 27 G496S G23048A

28 Q498R A23055G

29 N501Y A23063T

30 T547K C23202A

31 D614G A23403G

32 H655Y C23525T

33 N679K T23599G

34 P681H C23604A

35 N764K C23854A

36 D796Y G23948T

37 N856K C24130A

38 Q954H A24424T

39 N969K T24469A

40 C25000T C25000T

41 T9I C26270T

42 D3G A26530G

43 Q19E C26577G

44 A63T G26709A

45 A27259C A27259C

46 C27807T C27807T

47 RG203KR GGG28881AAC

Amino acid Nucleotide
1 6513>3
2 11283>9
3 C241T C241T

4 K856R A2832G

5 C3037T C3037T

6 T5386G T5386G

7 A2710T G8393A

8 T3255I C10029T

9 P3395H C10449A

10 I3758V A11537G

11 T13195C T13195C

12 P314L C14408T

13 C15240T C15240T

14 I1566V  A18163G

15 A67V C21762T

16 T95I C21846T

17 G339D G22578A

18 S371L T22673C

19 S373P T22679C

20 K417N G22813T

21 N440K T22882G

22 G446S G22898A

23 S477N G22992A

24 T478K C22995A

25 E484A A23013C

26 Q493R A23040G

Table 2: Omicron defining position-nucleotides

COVID-19 sequence data from GISAID
The Global Initiative for Sharing All Influenza Data 

(GISAID) provides a database of nucleotide sequence 
information and related epidemiological information for all 
influenza viruses and COVID-19-causing coronaviruses. 
GISAID provides multiple SARS-CoV-2 sequence data 
analyses collected worldwide, as well as sequence alignments, 
diagnostic primer and probe coordinates, 3D protein models, 
drug targets, and phylogenetic trees. In this study, global 
SARS-CoV-2 sequence data were obtained from GISAID on 
February 22, 2022; 8,474,962 sequence data were obtained 
from December 1, 2019, to February 22, 2022 (GISAID: 
https://gisaid.org/).

Materials and Methods
Data preprocessing and formatting

COVID-19 sequence data obtained in a FASTA file format 
from GISAID were converted from a multiline to a single-line 
format; only complete sequences corresponding to > 29,000 
bp were extracted. We secured sequence data by country 
and date through the GISAID unique ID, country, collection 
date, and sequence information in the header of the sequence 
data. In this study, countries with the most sequencing data, 
namely, the USA (2,702,068), UK (1,936,958), and Germany 
(415,309), as well as Korea, were analyzed. The sequence 
data obtained by country were mapped to the original 
sequence (NC_045512) to obtain a sequence alignment/map 
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(SAM) file. The binary alignment/map (BAM) file was then 
converted to a binary format using SAM tools to reduce the 
file size. From the generated BAM file, sequencing reads 
were synthesized for each position of the original sequence 
to determine whether bases differed from the original data; 
the mutation data was extracted in a variant call format. The 
obtained data were used to extract information on the number 
of mutations and mutation frequency ratio information for 
each position in the sequence and to confirm the mutation 
trend by securing the frequency ratio data by country, date, 
and POS-NTs (total 29,903 positions × 4 nucleotides × 4 
countries; Fig. 2).

As it is overly computationally intensive to determine the 
trend for all mutations in SARS-COV-2 (i.e., a combination 
of 29,903 positions and 3 SNP mutations), each nucleotide 
position was subjected to additional preprocessing to remove 
those without mutations (reference frequency = 100), those 
with no information on the time point of the dominant variant, 
and those where the change in reference allele frequency was 
< 10%. Next, we created continuous data for date information 

for which frequency ratio information did not exist and the 
position where the total data date was < 50 days removed. 
Subsequently, cubic spline interpolation was used to fill in the 
data for which the frequency ratio information did not exist. 
We removed the reference allele from the four nucleotides as 
we were interested in mutations. An additional preprocessing 
step is shown in Figure 3.

DVC selection for the prediction model
We attempted to predict the mutations comprising the 

dominant variants by analyzing and predicting the Delta and 
Omicron variants. To confirm the trend of a specific POS-
NT, a dominant variant selection time point was required. 
Moreover, we aimed to confirm whether the developed 
algorithm could identify all mutations constituting the Delta 
and Omicron variants at the dominant variant time point 
after determining the DVC POS-NT until the variant became 
dominant. Therefore, we attempted to define the dominant 
variant time-point (i.e., dominant date) for Delta and 
Omicron. We defined the strains that accounted for > 50% of 
all new COVID-19 cases as the dominant variants. However, 

Figure 2: Frequency ratio data acquisition process by country, date, and POS-NT. Freq, frequency.
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Figure 3: Additional preprocessing step to select POS-NTs for modeling.

information on the strain and lineage of the sequences was 
not available in the data provided by GISAID. Therefore, we 
proceeded with the lineage analysis provided by Pangolin, 
assigned a strain label, including Delta and Omicron, for 
each sequence, and secured the daily frequency ratio data of 
the strain. The strain that accounted for > 50% of all new 
COVID-19 cases was defined as the dominant variant and the 
corresponding time point was defined as the dominant date. 
Figure 4 illustrates the scheme determining the dominant date 
for each country and its variants. The dominant date was used 
as the time point for selecting the dominant variant using this 
algorithm and as a criterion for learning and prediction date 
windows for each variant. For the analysis and prediction 
of Delta mutations, the extracted data, including the alpha-
dominant to the delta-dominant dates, were employed for 
each POS-NT. The analysis and prediction of Omicron 
mutation data from the Delta dominant to Omicron dominant 
date.

Results
POS-NT frequency ratio prediction model

A POS-NT frequency ratio prediction model was 
developed to confirm the trend in each POS-NT frequency 
ratio. Gaussian Process Regression (GPR) is a powerful 
Bayesian-based, non-parametric kernel-based probabilistic 
model for regression analyses applied in exploration and 
utilization scenarios. It predicts the output of a new test set 
considering the novel input vectors of the test and training 
sets [1–3]. The most prominent advantage of GPRs is their 
ability to obtain the forecast uncertainty with the forecast 
value. In addition, GPR boasts computational efficiency and 
high accuracy and is suitable for other time series forecasting, 
such as weather forecasting [4]. Recently, the GPR model 
was used widely in predicting COVID-19 spread and deaths, 
exhibiting improved performance compared with other 
models [3, 5–7]. 
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Figure 4: Dominant variant time point (dominant date definition process). After detecting the sequence data for each country, the strain and 
lineage information for each sequence was allocated through lineage analysis provided by Pangolin. After securing daily rate data for each 
strain, those accounting for > 50% of all new COVID-19 cases were defined as dominant, and the corresponding time point was defined as the 
dominant variant time point (dominant date). The dominant date was used as the dominant variant selection time point and as a criterion for 
learning and prediction date windows for each variant in the algorithm.

The following four patterns were identified for Delta and 
Omicron variant-defining mutations: (1) a gentle increase 
from a ratio of 0 (Fig. 5A); (2) consistent high-frequency 
ratio values (Fig. 5B); (3) a gentle increase through the 
dominant date, with a high-frequency ratio, of the previous 
variant (Fig. 5C); (4) soaring pattern (Fig. 5D). To identify 
the trend of a gently increasing pattern and soaring pattern, it 
was necessary to select optimal training and prediction dates. 
Therefore, to learn the soaring pattern trend, we applied the 
latest information to predict the future and modeled each 
learning and prediction combination until the dominant date 
for each variant (i.e., learn for 10 and 20 days and predict 
3, 5, 8, and 10 days later; Fig. 6A). In the case of the Delta 
mutation, data from the Alpha-dominant to Delta-dominant 
dates were employed for the analysis window based on the 
variant. In the case of the Omicron mutation, data from the 
Delta-dominant date to the Omicron-dominant date were 
modeled (Fig. 6B).

DVC selection algorithm

Based on the frequency ratio prediction model for each 
POS-NT, a dominant variant candidate selection algorithm 
(DVC selection algorithm) was developed by applying the 
dominant variant candidate criteria (DVC criteria; Fig. 7). 
We then determined whether all POS-NTs met the DVC 
criteria for each prediction time point; upon failing to meet 
the DVC criteria, the corresponding POS-NT was reanalyzed 
the next day. If it met the DVC criteria at that time point, 
the corresponding POS-NT was classified as DVC POS-
NT. The DVC POS-NT was identified up to the dominant 
date of the variant, and then the identified DVC POS-NT 
was compared with the actual variant definition POS-NT 
list. Eight conditions were simulated to select the optimal 
DVC criteria based on the criteria for outliers in which the 
frequency of the DVC increased the next day (i.e., Criterion 
2), and the measured value was higher than the predicted 
value (i.e., Criterion 4; Table 3). The DVC criteria defined 
the corresponding POS-NT as DVC POS-NT when all four 
detailed criteria were satisfied.
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Figure 5: Time-dependent patterns of delta- and omicron-defining mutations. (A) Delta variant pattern: gentle increase from a ratio value of 0. 
(B–E) Omicron variant pattern; (B) high-frequency ratio values are consistently present; (C) gentle increase through the dominant date (with a 
high-frequency ratio) of the previous variant; (D) soaring pattern.

Figure 6: Learning and prediction window selection. (A) Example training and prediction window for one POS-NT (training for 10 days and 
predicting after 3 days) and (B) Delta and Omicron analysis date time.
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A visual summary of the methodology is shown in Figure 
8. The SARS-CoV-2 sequence data from GISAID were
formalized to secure frequency ratio information for each
POS-NT by country and date. A time-series forecasting model 
was developed using the time-series frequency ratio data
obtained using POS-NT. Over time, learning and prediction
progressed to the dominant date for each variant. For each
prediction date, the DVC POS-NT selection algorithm was
applied to all POS-NTs to secure DVC POS-NT for each
variant. When all DVC POS-NTs were selected until the
dominant date for each variant, they were compared with the
actual variant-defining POS-NT to determine the number of
days preceding the dominant date of the average number of
variant-defining POS-NTs. We also compared the prediction
results with the actual variant-defining POS-NT, to determine
how many variant-defining POS-NTs could be identified, on
average, how many days ago.

Confirmation metric for the results

The following four metrics were used to confirm the 
results: (1) number of DVC POS-NTs identified by the 
algorithm developed in this study, i.e., candidate count; 
(2) average number of days for identification; (3) number
of POS-NTs corresponding to the POS-NTs that define the
actual variant (candidate∩actual) among the identified DVC
POS-NTs; (4) ratio of the number of POS-NTs corresponding
to the actual variant-defining POS-NTs among the identified
DVC POS-NTs (Eq. (1)). Upon identifying all actual variant-
defining POS-NT, the Candidate∩Actual value will be
incremented. The algorithm can sensitively identify the DVC
POS-NT as the ratio value increases.

Figure 7: DVC POS-NT Selection Algorithm and Combined 
DVC Criteria. When POS-NT ratio data at a specific point occur, 
predictions for the future can be made. If the DVC criteria are met, 
the corresponding POS-NT is identified as the DVC POS-NT. If it 
does not meet the DVC criteria at that time point, the POS-NT moves 
to the next point, and the analysis continues. Criteria 1: number of 
days in which all dominant variant candidate criteria were satisfied; 
Criterion 2: whether the observed frequency ratio increased the next 
day compared with the previous day; Criterion 3: threshold of the 
predicted frequency ratio; Criterion 4: Observed value greater than 
the predicted value.

Criteria 1 Criteria 2 Criteria 3 Criteria 4

Condition 1 3 days in a row Freq ratioD – Freq ratioD-1 > 0 Pred freq ratio ≥ 30 Actual > Pred

Condition 2 3 days in a row Freq ratioD – Freq ratioD-1 > 0 Pred freq ratio ≥ 20 Actual > Pred

Condition 3 3 days in a row Freq ratioD – Freq ratioD-1 > 0 Pred freq ratio ≥ 10 Actual > Pred

Condition 4 3 days in a row Freq ratioD – Freq ratioD-1 > 0 Pred freq ratio ≥ 5 Actual > Pred

Condition 5 2 days in a row Freq ratioD – Freq ratioD-1 > 0 Pred freq ratio ≥ 30 Actual > Pred

Condition 6 2 days in a row Freq ratioD – Freq ratioD-1 > 0 Pred freq ratio ≥ 20 Actual > Pred

Condition 7 2 days in a row Freq ratioD – Freq ratioD-1 > 0 Pred freq ratio ≥ 10 Actual > Pred

Condition 8 2 days in a row Freq ratioD – Freq ratioD-1 > 0 Pred freq ratio ≥ 5 Actual > Pred

Table 3: Eight DVC criteria combinations

The DVC criteria define the corresponding POS-NT as the DVC POS-NT when all four detailed criteria are satisfied. Criteria 2 and 4 are fixed, and 
Criteria 1 and 3 are manipulated to simulate each combination. Freq ratioD: frequency ratio at time point D (current); Freq ratioD-1: frequency ratio 
at time point D-1 (previous day); Actual: actual frequency ratio; Pred: predicted frequency ratio.
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Figure 8: Visual summary of the methodology.

Table 4: Number of nucleotides removed during the preprocessing process and the number of POS-NTs to be modeled.

Delta Omicron 
USA UK Korea Germany USA UK Korea Germany

POS where mutation do not occur 193 2399 15019 2375 193 2399 15019 2374

POS without dominant date data 1008 3478 6063 2292 99 327 274 240

POS with < 10% variance in REF allele freq ratio 26,382 19,962 4035 8461 27,281 23,110 9730 10,507

POS with date count < 50 days 3 0 89 1 0 0 22 0

Table 4-1: Number of positions removed during the preprocessing process

USA UK Korea Germany USA UK Korea Germany
Number of POS for modeling 2317 4064 4697 16773 2330 4067 4858 16782

Number of POS-NTs for modeling 6951 12,192 14,091 50,319 6990 12,201 14,574 50,346

Table 4-2: Number of POS-NTs to be modeled (the number of total models)

Position (POS), Frequency (freq).

       (1)

POS-NT frequency ratio data for modeling

The number of nucleotide positions for the final model 
and the total number of models (POS-NT) are listed in  

Table 4. In this study, the USA data were analyzed for the first 
time. Prediction modeling was performed with the frequency 
ratio data for 6951 POS-NTs of Delta and 6990 of Omicron 
variants.
Dominant date by country and variant

In the USA, the Delta and Omicron variants were 
confirmed as the dominant variants on June 21 and December 
18, 2021, respectively (Fig. 9A). In the UK, Delta emerged 
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as the dominant variant on May 15, 2021, and Omicron on 
December 14, 2021 (Fig. 9B). In Korea, Delta emerged as the 
dominant variant on July 4, 2021, and Omicron on January 5, 
2022 (Fig. 9C). In Germany, the Delta mutation was defined 
as the dominant variant on June 13, 2021, while the Omicron 
mutation accounted for > 50% of new COVID-19 cases on 
December 28, 2021 (Fig. 9D). We used the dominant date as 
the dominant variant selection time point for this algorithm 
and as the criterion for the learning and prediction date 
windows for each variant.

POS-NT frequency ratio prediction model
The prediction results for each learning and prediction 

date combination, i.e., 10- and 20-day training and prediction 
after 3, 5, 8, and 10 days, were confirmed. Figures 10 and 
11 show the Delta and Omicron predictions for a model 
trained for 20 days and predicted three days after the learning 
period. The results for the learning and prediction for other 
combinations are shown in Figures S1–14. It was confirmed 
that as the number of forecast days decreased, the forecast 
trend improved (after 3 days > after 5 days > after 8 days > 
after 10 days).

POS-NT identification with the algorithm
Based on the developed frequency ratio prediction model 

for each POS-NT, eight combinations of DVC criteria were 
applied to identify DVC POS-NT until the dominant date 
of each variant and were compared with the actual variant-
defining POS-NT. In addition, the number of days ago, on 
average, that the POS-NT was identified as a DVC POS-NT 
and the ratio of the identified POS-NT corresponding to the 
actual variant-defining POS-NT to the identified DVC POS-
NT was confirmed (Eq. (1)). Table S1 provides the learning 
dates, prediction dates, number of POS-NTs recognized as 
DVC POS-NTs by condition and the average number of 
days for identifying Delta mutation for all combinations of 
learning and prediction dates and the eight DVC conditions. 
Table S2 shows Delta-like information for Omicron.

The optimal DVC criterion was specified when two 
conditions were satisfied: (1) identify all variant-defining 
POS-NTs in Delta and Omicron, and (2) have the highest 
ratio (Eq. (1)). In the case of Delta mutation, all Delta-defined 
POS-NTs were identified in 39 model-specific and DVC 
criteria combinations and showed the highest ratio values in 
prediction using Condition 2, 3 days after the 20-day learning 
period. In the case of the Omicron mutation, all Omicron-
defined POS-NTs were identified in 11 model-specific and 
DVC criteria combinations and showed the highest ratio 
values in prediction using Condition 3, 3 days after the 20-

Figure 9: Definition of dominant dates for Delta and Omicron by country. (A) In the USA, Delta became the dominant variant on June 21, 
2021, and Omicron on December 18, 2021; (B) in the UK, Delta became the dominant variant on May 15, 2021, and Omicron on December 14, 
2021; (C) in Korea, Delta became the dominant variant on July 4, 2021, and Omicron on January 5, 2022; (D) in Germany, Delta was defined 
as the dominant variant on June 13, 2021, and Omicron accounted for more than 50% of all new COVID-19 cases on December 28, 2021.
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Figure 10: Delta: Results of learning for 20 days and predicting 3 days later. TR: learning dates (training dates), TS: test dates.

day learning period. As a result, when using the frequency 
ratio prediction model that learns for 20 days and predicts 3 
days later and the DVC selection algorithm using Condition 3 
(3 days in a row, difference between the frequency ratio of the 
current and previous day is ≥ 0, predicted frequency is > 10%, 
and measured value exceeds the predicted value), all variant-
defining POS-NTs are identified for Delta and Omicron with 
the highest ratio (Eq. (1), Table 5).

Through the optimal ratio prediction model (i.e., learning 

for 20 days and prediction 3 days later) and DVC selection 
algorithm (i.e., Condition 3), 69 DVC POS-NTs were 
identified for Delta mutation, an average of 47 days before 
the dominant date. Among them, 13 Delta variant-defining 
POS-NTs were recognized 18 days before the dominant 
date. Similarly, 102 DVC POS-NTs were identified for 
Omicron mutation an average of 82 days before the dominant 
date, of which 44 Omicron variant-defining POS-NTs were 
recognized 25 days before the dominant date.
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Figure 11: Omicron: Results of learning for 20 days and predicting 3 days later. TR: learning dates (training dates), TS: test dates.

TR_TS date Condition Candidate Count Candidate∩Actual Ratio

1 TR_20_TS_3 Condition 2 45 (49 days ago) 13 (10 days ago) 0.288889

2 TR_20_TS_10 Condition 2 49 (44 days ago) 13 (7 days ago) 0.265306

3 TR_10_TS_8 Condition 6 56 (48 days ago) 13 (11 days ago) 0.232143

4 TR_20_TS_8 Condition 3 58 (33 days ago) 13 (16 days ago) 0.224138

5 TR_10_TS_10 Condition 6 60 (46 days ago) 13 (9 days ago) 0.216667

6 TR_10_TS_10 Condition 3 61 (43 days ago) 13 (14 days ago) 0.213115

7 TR_10_TS_3 Condition 6 61 (47 days ago) 13 (13 days ago) 0.213115

8 TR_20_TS_10 Condition 6 61 (47 days ago) 13 (8 days ago) 0.213115

9 TR_20_TS_3 Condition 6 61 (47 days ago) 13 (12 days ago) 0.213115

10 TR_20_TS_10 Condition 3 63 (44 days ago) 13 (15 days ago) 0.206349

11 TR_10_TS_8 Condition 3 63 (40 days ago) 13 (15 days ago) 0.206349

12 TR_10_TS_5 Condition 3 67 (47 days ago) 13 (18 days ago) 0.19403

13 TR_20_TS_5 Condition 3 67 (47 days ago) 13 (18 days ago) 0.19403

14 TR_20_TS_3 Condition 3 69 (47 days ago) 13 (18 days ago) 0.188406

15 TR_10_TS_3 Condition 3 69 (46 days ago) 13 (18 days ago) 0.188406

16 TR_10_TS_10 Condition 4 80 (43 days ago) 13 (19 days ago) 0.1625

17 TR_10_TS_8 Condition 4 83 (42 days ago) 13 (23 days ago) 0.156627

18 TR_10_TS_10 Condition 7 97 (47 days ago) 13 (16 days ago) 0.134021

Table 5: Combination results of POS-NT identification model and DVC criteria for all variant definitions.
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19 TR_20_TS_10 Condition 7 97 (46 days ago) 13 (16 days ago) 0.134021

20 TR_10_TS_3 Condition 4 97 (49 days ago) 13 (26 days ago) 0.134021

21 TR_20_TS_8 Condition 4 97 (42 days ago) 13 (26 days ago) 0.134021

22 TR_20_TS_8 Condition 7 98 (47 days ago) 13 (17 days ago) 0.132653

23 TR_10_TS_5 Condition 7 99 (50 days ago) 13 (19 days ago) 0.131313

24 TR_10_TS_5 Condition 4 99 (51 days ago) 13 (26 days ago) 0.131313

25 TR_20_TS_10 Condition 4 100 (46 days ago) 13 (24 days ago) 0.13

26 TR_10_TS_8 Condition 7 101 (47 days ago) 13 (21 days ago) 0.128713

27 TR_20_TS_5 Condition 4 101 (53 days ago) 13 (27 days ago) 0.128713

28 TR_20_TS_5 Condition 7 102 (47 days ago) 13 (20 days ago) 0.127451

29 TR_20_TS_3 Condition 7 102 (51 days ago) 13 (20 days ago) 0.127451

30 TR_20_TS_3 Condition 4 102 (53 days ago) 13 (27 days ago) 0.127451

31 TR_10_TS_3 Condition 7 103 (51 days ago) 13 (20 days ago) 0.126214

32 TR_10_TS_10 Condition 8 122 (51 days ago) 13 (24 days ago) 0.106557

33 TR_10_TS_8 Condition 8 126 (54 days ago) 13 (28 days ago) 0.103175

34 TR_10_TS_5 Condition 8 128 (54 days ago) 13 (28 days ago) 0.101562

35 TR_20_TS_8 Condition 8 131 (55 days ago) 13 (27 days ago) 0.099237

36 TR_10_TS_3 Condition 8 131 (55 days ago) 13 (28 days ago) 0.099237

37 TR_20_TS_10 Condition 8 131 (55 days ago) 13 (26 days ago) 0.099237

38 TR_20_TS_5 Condition 8 132 (55 days ago) 13 (29 days ago) 0.098485

39 TR_20_TS_3 Condition 8 137 (57 days ago) 13 (28 days ago) 0.094891

Table 5-1: Combination results of model and DVC criteria that identify all Delta-defined POS-NTs.

Twenty-nine model-specific and DVC criterion combinations identified all Delta-defined POS-NTs and showed the highest ratio values in prediction 
and Condition 2 after three days of 20-day learning. TR: learning dates(training dates), TS: test dates. Bold marks indicate combinations that 
identified all variant-defining POS-NT. Bold marks indicate the combination of the final DVC selection algorithm proposed in this study.

TR_TS date Condition Candidate Count Candidate∩Actual Ratio

1 TR_20_TS_3 Condition 3 102 (82 days ago) 44 (25 days ago) 0.431373

2 TR_10_TS_3 Condition 3 104 (81 days ago) 44 (25 days ago) 0.423077

3 TR_10_TS_3 Condition 7 110 (87 days ago) 44 (29 days ago) 0.4

4 TR_20_TS_3 Condition 4 111 (87 days ago) 44 (29 days ago) 0.396396

5 TR_20_TS_3 Condition 7 113 (89 days ago) 44 (30 days ago) 0.389381

6 TR_20_TS_5 Condition 4 113 (88 days ago) 44 (27 days ago) 0.389381

7 TR_10_TS_3 Condition 4 114 (86 days ago) 44 (29 days ago) 0.385965

8 TR_10_TS_3 Condition 8 122 (94 days ago) 44 (34 days ago) 0.360656

9 TR_20_TS_5 Condition 8 136 (107 days ago) 44 (37 days ago) 0.323529

10 TR_20_TS_3 Condition 8 137 (105 days ago) 44 (38 days ago) 0.321168

11 TR_10_TS_5 Condition 8 141 (109 days ago) 44 (35 days ago) 0.312057

Table 5-2: Combination results of model and DVC criteria that identify all Omicron-defined POS-NTs.

All omicron-defined POS-NTs were identified in 11 model-specific and DVC criterion combinations and showed the highest ratio values in prediction 
and Condition 3 after 3 days of 20-day learning. TR: learning dates(training dates), TS: test dates. Bold marks indicate combinations that identified 
all variant-defining POS-NT. Bold marks indicate the combination of the final DVC selection algorithm proposed in this study.
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Discussion
Many previous studies have predicted the incidence of 

COVID-19 and the ratio of Delta and Omicron mutations. 
For example, Pathan and Biswas predicted the COVID-19 
time series by analyzing the ratio of 12 base mutations using 
3,068 samples and the LSTM model from NCBI GenBank 
in 2020 to predict the mutation rate for future patients who 
do not yet exist [8]. Singh et al. obtained COVID-19 case 
count data for 15 states in India through the Kaggle website 
and predicted the future spread of SARS-CoV-2 using the 
Kalman filter [9]. Marzouk et al. collected the COVID-19 
data of Engypt from the Flevy open source in 2021 and 
predicted a COVID-19 outbreak (i.e., cumulative infection) 
after one week and one month, using LSTM, CNN, and MLP; 
the prediction results were in excellent agreement with the 
reported results [10]. Meanwhile, Obermeyer et al. proceeded 
with clustering using GISAID data on January 20, 2022, 
and the Pango lineage to infer prevalence for each lineage. 
Subsequently, they developed a hierarchical Bayesian 
regression model, PyR0, to detect and predict increases 
in B.1.1.7, AY.4, and BA.I in England [11]. De Hoffer et 
al. used 646.697 spike protein sequence data from the UK 
through GISAID in 2022 to perform clustering on a monthly 
or weekly basis based on amino acid substitution information 
and defined the appearance of a major cluster. They defined 
a new permanent variant as a chain containing clusters that 
share the same variant three or more consecutive times and 
designated an early warning for the emergence of a new 
permanent variant when 1% of the total sequence data was 
reached. As a result, an early warning was provided for the 
Alpha cluster as a new permanent variant six weeks before 
the WHO officially classified it as a VoC [12]. Although a 
few studies have predicted the occurrence of new mutations 
[Jankowiak, 12], they used protein-based data, and no studies 
have confirmed the trend by predicting the POS-NT ratio. 
Therefore, the current study can provide more detailed 
information regarding SARS-CoV-2 variants by predicting 
the trend and aspect of the mutation for each POS-NT.

This study has several limitations. First, the increasing 
POS-NT ratio was predicted using the DVC candidate 
selection algorithm, while the decreasing POS-NT ratio 
remained unanalyzed. Second, given that the dominant variant 
candidate identification algorithm was developed based on 
USA data, the algorithm may not apply to other countries 
in Asia. Hence, as different countries have demonstrated 
different rates of SARS-CoV-2 transmission and emergence 
of dominant variants, it is necessary to develop DVC selection 
algorithms for other countries, such as the UK, Germany, and 
Korea. Third, only replacement mutations were analyzed in 
this study, whereas other mutation types, such as insertions 
and deletions, were not considered.

Conclusions
We obtained SARS-CoV-2 POS-NT frequency ratio data 

for each country using a large amount of GISAID sequence 
data and defined the time point of the dominant variants for 
each mutation in each country. Subsequently, we developed 
a SARS-CoV-2 POS-NT frequency ratio prediction model 
and DVC selection algorithm using GPR for the USA and 
verified them for Delta and Omicron. Using this algorithm, 
we successfully identified all DVC POS-NTs before the 
dominant date, regardless of the soaring or gently increasing 
POS-NT patterns. As we were able to identify all mutation 
definitions of POS-NT for Delta and Omicron mutations, the 
algorithm can provide early warnings for other mutations in 
the future. If sufficient data exists, our model is expected to 
serve as an early warning algorithm for other viruses, thus 
improving global health.
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