Therapeutic Potential of Targeting p27kip1 in Plaque Vulnerability

Author(s): Jerry Trinh, Jennifer Shin, Vikrant Rai, Devendra K. Agrawal

Atherosclerosis, a critical contributor to coronary artery diseases, involves the accumulation of cholesterol, fibrin, and lipids within arterial walls, inciting inflammatory reactions culminating in plaque formation. This multifaceted interplay encompasses excessive fibrosis, fatty plaque development, vascular smooth muscle cell (VSMC) proliferation, and leukocyte migration in response to inflammatory pathways. While stable plaques demonstrate resilience against complications, vulnerable ones, with lipid-rich cores, necrosis, and thin fibrous caps, lead to thrombosis, myocardial infarction, stroke, and acute cerebrovascular accidents. The nuanced phenotypes of VSMCs, modulated by gene regulation and environmental cues, remain pivotal. Essential markers like alpha-SMA, myosin heavy chain, and calponin regulate VSMC migration and contraction, exhibiting diminished expression during VSMC de-differentiation and proliferation. p27kip, a CDK inhibitor, shows promise in regulating VSMC proliferation and appears associated with TNF-α-induced pathways impacting unstable plaques. Oncostatin M (OSM), an IL-6 family cytokine, correlates with MMP upregulation and foam cell formation, influencing plaque development. Efforts targeting mammalian target of rapamycin (mTOR) inhibition, notably using rapamycin and its analogs, demonstrate potential but pose challenges due to associated adverse effects. Exploration of the impact of p27kip impact on plaque macrophages presents promising avenues, yet its complete therapeutic potential remains untapped. Similarly, while OSM has exhibited potential in inducing cell cycle arrest via p27kip, direct links necessitate further investigation. This critical review discusses the role of mTOR, p27kip, and OSM in VSMC proliferation and differentiation followed by the therapeutic potential of targeting these mediators in atherosclerosis to attenuate plaque vulnerability.

© 2016-2024, Copyrights Fortune Journals. All Rights Reserved