Comparative Biochemical Characterization of L-Asparaginases from Four Species of Lactic Acid Bacteria

Author(s): Kodchakorn Phetsri, Makoto Furukawa, Risa Yamashiro, Yuka Kawamura, Junji Hayashi, Ryuta Tobe, Yosuke Toyotake, Mamoru Wakayama

L-Asparaginase (ASNase; EC 3.5.1.1) is an enzyme that catalyzes the hydrolysis of L-asparagine to L-aspartic acid and ammonia. Generally, ASNases from Escherichia coli and Erwinia chrysanthemi are used for the treatment of acute lymphoblastic leukemia. However, few studies focusing on ASNase from lactic acid bacteria (LAB) have been reported. The aim of this study is to characterize ASNase genes from four LAB strains: Streptococcus thermophiles, Lactobacillus plantarum, L. acidophilus, and L. sakei. ASNase genes from each strain amplified by polymerase chain reaction PCR were inserted into NdeI and XhoI sites of pET28a-(+) and cloned in E. coli BL21(DE3). Recombinant ASNases were purified using nickel-nitrilotriacetic acid column chromatography. Among the four strains, the purified recombinant ASNase from S. thermophilus exhibited the highest specific activity of 113.0 U/mg and specificity for L-asparagine. The pH and temperature ranges for S. thermophilus ASNase were pH 8.0-9.0 and 30°C-50°C, respectively. The activity of the enzyme was significantly inhibited by Ni2+Km and kcat values were 2.91 mM and 1.53 × 102 s–1, respectively. In this study, we described the biochemical properties of ASNases from four LAB and demonstrated that ASNase from S. thermophilus has potential applications in food processing.

© 2016-2024, Copyrights Fortune Journals. All Rights Reserved