Brief History of Electronic Structure Calculations in Computational Chemistry

Author(s): Wenfa Ng

The past influence the present and future; for example, in computational chemistry, simplifying assumptions and approximations critical to problem-solving in the pre-computing era remains relevant today in allowing simulation of larger systems using reasonable amount of computational time. By highlighting significant milestones in efforts - from both theoretical and simulation perspectives - aimed at understanding the nature of chemical bond formation, this short essay traces the development and evolution of electronic structure calculation methods over the years. Specifically, Schrodinger equation occupies central place in computational chemistry, where its intractability to easy solution spawned an entire field seeking to develop increasingly refined and accurate methods for obtaining approximate solutions. Such a chronological thread also form the basis for asking counterfactual (“what if”) questions examining, from a historical vantage point, the relative role of computational power and theoretical intuition in the development of computational chemistry.

© 2016-2022, Copyrights Fortune Journals. All Rights Reserved