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Abstract 

A nitrogen laser is a gas laser operating in the 

ultraviolet range (typically 337.1 nm) using mole-

cular nitrogen as its gain medium, pumped by an 

electrical discharge. It is efficient sources for laser-

induced fluorescence and photochemistry and 

general spectroscopy. There is a model for a single-

pass, discharge type standoff nitrogen laser initiated 

by a femtosecond filament in nitrogen gas. A Nit-

rogen gas laser filament plasma kinetic system is 

described by the set of plasma kinetic equations 

which associated with rate equations for the 

population of the lasing levels and number of 

emitted photons. The change of concentration of 

different neural and ionic atomic and molecular 

species in the filament plasma is described by set of 

rate equation, Ns is the density of species of type - 

s, and Gs, Ls are the relevant generation and loss 

rates. T, Te, and Tvibr are gas, electronic, and vibra-

tional temperatures, respectively. The concen-

tration of system gas is not balanced and Te≈ Tvibr. 

T parameters transform to T→TE+Ω∙√T; TEN, Ω

R. We discuss the system stability and stability 

switching for different values of TE and Ω para-

meter. 

 

There is a practical guideline that combines 

graphical information with analytical work to effe-

ctively study the local stability of models involving 

dependent parameters. The stability of a given 

steady state is determined by the graphs of some 

function of TE and Ω parameters. 

 

Keywords: Nitrogen gas laser; Plasma; Filament; 

Electron temperatures; Vibrational temperature; 

Delay Differential Equation (DDE); Stability; 

Bifurcation; Orbit; Fixed point; Eigenvalue; Eige-

nstate 

 

1. Introduction 

In this article, we discuss the crucial subject of 

nitrogen gas laser filament plasma kinetic system 

stability and stability switching for different values 

https://en.wikipedia.org/wiki/Gas_laser
https://en.wikipedia.org/wiki/Ultraviolet
https://en.wikipedia.org/wiki/Nitrogen
https://en.wikipedia.org/wiki/Gain_medium
https://en.wikipedia.org/wiki/Laser_pumping


 
 

J Anal Tech Res 2021; 3 (2): 46-59                                                                                  DOI: 10.26502/jatri.022 

   

Journal of Analytical Techniques and Research                                                                                               47 

of ET ( ET T T  ) and   parameter, 

where 𝑇𝐸 ∈ ℕ ; Ω ∈ ℝ. Lasing from molecular 

nitrogen is used in many scientific and industrial 

applications. The discharge pumped nitrogen laser, 

operating in a broad range of gas pressures, from 

several mill bars to the atmospheric pressure, and 

repetition rates from several hertz to several kilo 

hertz. It is robust source of high-power near-UV 

radiation. Achieving nitrogen lasing via remote 

excitation would pave the way to many potential 

applications. It is remotely initiated lasing from 

molecular gases by femtosecond filaments. A mid 

infrared femtosecond laser filament can introduce 

backward-directed lasing of molecular nitrogen via 

a resonant excitation transfer mechanism. The 

characterization of the filament ignited nitrogen 

laser, including the spatial and temporal properties 

of the generated UV emission and generation 

thresholds. A filament-assisted nitrogen laser is 

efficient as its conventional discharge-pumped 

counterpart. Mid-IR ultrashort laser pulses radically 

enhance fila mentation-assisted lasing of N2 relative 

to ultrashort pulses in the near-IR. We need a full 

analysis of multiple fila mentation. Another area is 

a remotely pumped N2 laser in the atmosphere and 

optimization of the pumping via electron-N2 

collisions and evolving long-pulse light or micro-

wave sources in combination with the femtosecond 

filament [1]. Filamentation is modeled by num-

erical solving the cylindrically symmetric nonlinear 

Schrodinger equation, which accounts for the 

impact of plasma dispersion and refraction, beam 

diffraction, Kerr, Raman, and plasma non-

linearities. We describe a change of concentration 

of different neutral and ionic atomic and molecular 

species in the filament plasma by the following set 

of rate equations: 

 
[ ]

[ ] [ ]s
s s

d N
G L

dt
  ; sN  is the density of 

species of type-s; sG and sL are the relevant 

generation and loss rates. Where the subscript s 

stands-for 2, ,e Ar Ar 
 

and  
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2(4 )Ar P ; sN  is the density of species of type- 

s; and sG , sL are the relevant generation and loss 

rates. The rate equations are solved jointly with the 

equations for the electron temperature and the 

vibrational temperature of ground-state nitrogen 

molecules.  
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e e vibrN k T T v      - is the electron 

energy transfer to vibrational excitation of 

nitrogen-molecules. , ,e vibrT T T  are gas, electronic, 

and vibrational temperatures, respectively. The 

concentration of system gas is not balanced and

e vibrT T , and additionally there is a new behavior 

forT parameter, → 𝑇𝛯 + 𝛺 ⋅ √𝑇 ; 𝑇𝛯 ∈ ℕ ; Ω ∈ R.  
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is the electron energy transfer in elastic and 

Coulombic collisions to translational energy of 

nitrogen and argon molecules, atoms, and ions. k is 

the Boltzmann constant, , ,e vibrT T T are gas, elec-

tronic, and vibrational temperatures, resp-ectively. 

sv are the frequencies of elastic collisions of elec-

trons and corresponding species, *v is the freq-

uency of inelastic collisions of electrons with N2 in 

the ground state which are responsible for 

vibrational heating; 
2

2

2
N

N

m

M



  

2
r

r

A

A

m

M



 ; 

ek is the de excitation rate of excited argon atoms 

by electrons. Assumption: eG and eL are the rele-

vant generation and loss rates, and they are very 

close in their values e eG L   then

edN

dt
 .  
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The reduced first-rate equation: 
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The second-rate equation:  
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Under the transformation𝑇 → 𝑇𝛯 + 𝛺 ⋅ √𝑇 ; 𝑇𝛯 ∈

ℕ ; Ω ∈ R 

 

We get the reduced rate equations: 
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2,VT N and , rVT A are the vibrational relaxation 

times due to N2-N2 and N2-Ar collisions, 

respectively. They are calculated by using the 

Landau-Teller approximation; 11.8excI eV  

stands for the argon excitation energy into

*

3

2(4 )
r

A P  [2]. Rigorous bounds on the rate of en-

ergy exchange between vibrational and trans-

lational degrees of freedom are described by simple 

classical models of diatomic molecules. The out-

comes are known as the elementary approximation 

introduced by Landau and Teller. The initial energy 

of electrons in the wake of the mid-IR laser pulse is 

taken equal to 1eV (Te=0.66eV). The initial tran-

slational temperature of atoms and molecules in the 

gas mixture and the vibrational temperature of 

nitrogen molecules are set equal to 290KVT T  . 

We have two variables in our systems: ,eT  elec-

tronic temperature and vibrT , vibrational temp-

erature which change in time. We multiply the 

reduced first-rate equation’s two sides by
2

3 ek N 
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Finally, we get the two reduced rate equations 

which include electron temperature and the 

vibrational temperature of ground-state nitrogen- 

molecules. 2N is the nitrogen pressure (~ 1 bar) 

and 
rAN is Argon pressure. 

2Nv is frequency of 

2N , 
2N

v  is frequency of 2N ions, 
4N

v  is 

frequency of 4N ions, 
rAv is frequency of rA , 

rA
v 

is frequency of rA ions, and
2

r
Av


is frequency of 

2r
A ions.  
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At fixed-points (equilibrium points): 
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We define the parameters functions: 
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Our system fixed points are:  
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We get the 3D function, 
*

eT (fixed electronic temp-

erature value) and 
*

vibrT (fixed vibrational temp-

erature value) graphs as a function of T and

parameters. The initial translational temperature of 

atoms and molecules in the gas mixture and the 

vibrational temperature of nitrogen molecules are 

equal VT T  and 290  ; 290 o o

VT K T K 

. We can set  ; v virb e eT T n N n    and *evv v  

[3]. vT is vibrational temperature of N2 molecules, 

T is the translational gas temperature, 
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vibrational relaxation through N2-N2 (
2,VT N ) and 

N2-Ar ( , rVT A ) collisions are estimated using the 

Landau-Teller approximation:  
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We define two-functions for the simplicity 

2 21 ,( , )N VT NT N  And 2 ,( , )
r rA VT AT N  . A 

vibrational energy transfer between diatomic 

molecules is important and the classical model in 

vibrational processes is Landau-Teller model. The 

model takes the population of each vibrational level 

to be given by the Boltzmann equilibrium 

distribution. The translation of gas temperature is 

almost constant for specified conditions and time 

intervals. A Resonance enhanced multi photon 

Ionization (REMPI) is an attractive for population 

inversion of molecular nitrogen in an Ar: N2 gas 

mixture. There is a big interest in a population 

inversion of molecular nitrogen in a REMPI 

pumped Ar: N2 gas mixture [3]. 

 

2. Nitrogen gas laser filament plasma kinetic 

system linearization and characteristic equation 
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and 2u are small, these quadratic terms are 

extremely small [7, 8]. 
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Function 2 ( , )e vibrf T T includes functions 
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The eigenvalues of the matrix A are given by the 

characteristic equation det( ) 0A I   , where

I is the identity matrix. For our 2 x 2 matrix the 

characteristic equation becomes:  
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For simplicity we define two global parameters: 
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Expanding the determinant yields:  
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Another way to get the system characteristic 

equation and explore stability is by adding to 

coordinates [  e vibrT T ] arbitrarily small increments 

of exponential form[  ] t

e vibrt t e , and retaining the 

first order terms in  e vibrT T . The system of two 

homogeneous equations leads to a polynomial 

characteristics equation in the eigenvalues  . 

Nitrogen gas laser filament plasma kinetic system 

,eT  electronic temperature and vibrT , vibrational 

temperature fixed values with arbitrarily small 

increments of exponential form[  ] t

e vibrt t e are

* * ; t t

e e e vibr vibr vibrT T t e T T t e        .  

 

We choose these expressions for our ( ), ( )e vibrT t T t

as small[  ]e vibrt t from the system fixed points at 

time 0t  ; 

* *( 0)  ; ( 0)e e e vibr vibrT t T t T t T    
        

[1].  
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The small increment Jacobian of our Nitrogen gas 

laser filament plasma kinetic system is as follow:  
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2

2

1 2 *( ) ( ) 0e

N

N
v

N
                             (65) 

 

The system characteristic equation is 

2

2 2

1 2 1 2 *( ) ( ) 0e

N

N
v

N
                  (66) 

et is system electronic temperature small increment 

and vibrt is system vibrational temperature small 

increment. The electron temperature of plasma can 

be several orders of magnitude higher than the 

temperature of the neutral species or of the ions. 

Laser-induced plasma has very high electron temp-

erature; the photo-thermoelectric effect is due to a 

local increase of the electron temperature induced 

by the laser illumination. Electron temp-eratures 

are measured by firing a laser beam into the plasma 

and detecting the light scattered by the electrons. 

Electron temperature in defined to be a temperature 

of free electrons. The electron temp-erature of the 

Laser Induce Plasma (LIP) is mea-sured by using 

Boltzmann equation 

ln( )lw

elec

I E
C

g A k T


  

 
, where, I is the  

relative intensity of the line emission, lw is the line 

wavelength, g is the statistical weight of the upper 

level, A is the transition probability, E is the ene-

rgy pf the upper level, k is the Boltzmann constant, 

elecT is the electron temperature of the Laser Induce 

Plasma (LIP), and C is a constant. By introducing 

laser supported radiation wave model, the depe-

ndent of the electron temperature elecT is expressed. 

 

0.18( )rad i
elec

Plasma scal

I e
T

E 




 
, where, radI  is the 

laser irradiance,  is the Boltzmann constant, 

Plasma is the plasma emissivity, ie is the internal 

energy (energy per unit mass), of the plasma at the 

ignition point, and scalE is a scaling constant. 

 

The vibrational and rotational temperatures in the 

supersonic flow of a gas‐dynamic laser are deter-

mined simultaneously by using spectral gain mea-

surement techniques (over a number of rota-tional 

lines). The vibrational and rotational temp-erature 

and, consequently, the optical energy in the flow 

are reported for two different gas‐dynamic lasers 

having significantly different area ratio nozzles and 

varying stagnation temperatures [9, 10]. 

 

3. Nitrogen gas laser filament plasma kinetic 

system stability and stability switching 

Our Nitrogen gas laser filament plasma kinetic 

system’s characteristic equation is  

 

2

2 2

1 2 1 2 *( ) ( ) 0e

N

N
v

N
                  (67) 

 

The eigenvalue of a matrix A are given by the 

characteristic equation det( ) 0A I   , where 

I is the identity matrix.  

2

1 *

* 2

 ; det( ) 0e

N

v

NA A I
v

N






 
 

    
 
 

   (68) 

 

2

1 *

* 2

det 0e

N

v

N
v

N

 

 

 
 

  
 
 

                     (69)

                                                              

We define 1 2trace( ) ; det( )A A    , the 

1 is equal  
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2 2 2

4
2

2

2

1 1 2 *

*

,

, 2

trace( ) [ (

1 1
) ( )] {

2 2

1
[ ( ) / ]}

r r r r

r

r

N N N

e
A A AN A

N

A

VT A

VT N

A v v v

N
v v v v v

N

N

N

  








 


        

        

 

      (70) 

                                                           

2 21 , 2 ,( , )  ; ( , )
r rN VT N A VT AT N T N       (71) 

 

2 2 2

4
2

2

2

1 1 2 *

*

2

1 2

trace( ) [ (

1 1
) ( )] {

2 2

1
[ ( ) / ( , )]}

( , )

r r r r

r

r

N N N

e
A A AN A

N

A

A

N

A v v v

N
v v v v v

N

N
T N

T N N

  








 


        

        

 

        (72)                                                                     

 

2

2

2 1 2 *det( ) e

N

N
A v

N
                            (73) 

 

2 2 2

4
2

2

2 2

2 *

*

2

2 *

1 2

det( ) { [ (

1 1
) ( )]} {

2 2

1
[ ( ) / ( , )]}

( , )

r r r r

r

r

N N N

e
A A AN A

N

A e
A

N N

A v v v

N
v v v v v

N

N N
T N v

T N N N










 


     

        

   

  (74)                                                                            

 

Then 

2 2

1 1 2 1 1 2

1 1

4 4
 ; 

2 2
 

         
    (75) 

                                  

Are the solutions of the quadratic equation (67). 

The eigenvalues are dependent only on the trace 

and determinant of the matrix A. The typical case 

for the eigenvalues is to be distinct ( 1 2  ). In 

this case, the theorem states that the corresponding 

eigenvectors 1 2,v v are linearly independent, and 

hence span the entire plane. In particular, any initial 

condition 0x can be written as a linear combination 

of eigenvectors

2

0

1

k k

k

x c v


   . The general 

solution for ( )x t  is

2

1

( ) k t

k k

k

X t c e v
 



   . It is 

general solution since it is a linear combination of 

solutions to
( )

( )
dX t

A X t
dt

  , and is itself a 

solution. It satisfies the initial condition

0( 0)X t X   and the existence and uniqueness 

theorem give the only solution [7, 8]. The 

classification of fixed points gives the type and 

stability of all the different fixed points on a single 

diagram. The axes are the trace 1 and the deter-

minant 2 of the matrix A . All of the information 

in the diagram is implied by the following for-

mulas:  

 

2 2 2
1 1 2

1,2 2 1

11

4
 ;  ; 

2
k k

kk

  


    
            (76)  

                                                                        

1 2( ) ( ) 0                            (77) 

 

2

1 2 1 2( ) ( ) 0               (78) 

 

If 2 0  , the eigenvalues are real and have 

opposite sign hence the fixed point is a saddle 

point. If 2 0  , the eigenvalues are either real 

with the same sign (nodes), or complex conjugate 

(spirals and centers). Nodes satisfy 

2

1 24 0    and spirals satisfy 

2

1 24 0    . The parabola
2

1 24 0    is 

the borderline between nodes and spirals; star 

nodes and degenerate nodes live on this parabola. 

The stability of the nodes and spirals is determined 

by 1 . When 1 0  , both eigenvalues have 

negative real parts, the fixed point is stable. 
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Unstable spirals and nodes have 1 0  . Neutrally 

stable center lives on the borderline 1 0  , where 

the eigenvalues are purely imaginary. If 2 0   

then at least one of the eigenvalues is zero. Then 

the origin is not an isolated fixed point. There is 

either a whole line of fixed points, or a plane of 

fixed points, if 0A  . Saddle points, nodes, and 

spirals are the major types of fixed points; they 

occur in large open regions of the ( 2 1,  ) plane. 

Centers, stars, degenerate nodes, and non-isolated 

fixed points are borderline cases that occur along 

the curves in the ( 2 1,  ) plane [7, 8].  

  

4. Conclusion and results 

In laser system a laser generation in molecular 

nitrogen in an argon-nitrogen gas mixture is 

remotely excited at a specific distance above in a 

femtosecond laser filament. Mid-IR laser pulses 

enable radical enhancement of fila mentation 

assisted lasing by N2 molecules. High energies are 

achieved from laser pulses which generated 

through the second-positive-band transitions of N2. 

It is corresponding to a 0.5% total conversion 

efficiency from mid infrared laser energy to the 

energy of UV lasing. Lasing from molecular 

nitrogen is used in many applications. The 

discharge-pumped nitrogen laser, operating in a 

broad range of gas pressures, from several millibars 

to the atmospheric pressure, and repetition rates 

from several hertz to several kilohertz. It is robust 

source of high-power near-UV radiation. Achieving 

nitrogen via remote excitation would pave the way 

to many potential applications. A narrow band 

source of stimulated emission would provide 

coherent, highly directional radiation for highly 

selective and sensitive remote spectroscopy of the 

atmosphere. The possibility for remote ignition of a 

free localized nitrogen laser is demonstrated 

previously in a microwave discharge. By using 

focused laser beams we can excite free-space 

nitrogen lasing. The process of femtosecond fila 

mentation in gases is related to remotely excited 

free-space nitrogen laser. Filamentation of high-

power femtosecond laser radiation in gases is 

connected the formation of a self-guided, high-

intensity field structure, accompanied by a 

significant spectral broadening, super continuum 

generation, and creation of a plasma channel in the 

wake of the pulse. The femtosecond filaments can 

be generated at standoff distances of up to tens of 

kilometers and from ionized channels of up to 

hundreds of meters. Formation of plasma in the 

filament, similar to a gas discharge, initiates a chain 

of plasma chemical reactions in the atmosphere 

which lead to the appearance of a large variety of 

neutral and ionic species in rotationally, vib-

rational, and electronically excited states. We get a 

situation that favorable conditions for population 

inversion and lasing between different electronic 

levels in nitrogen and in oxygen is created. We can 

use the standoff lasing with a femtosecond filament 

as an advantage in comparison to scheme due to 

substantially less scattering and absorption losses.  

There is a possibility of stimulated emission from 

nitrogen in femtosecond filaments. The proof of 

lasing is based on the exponential fit of the 

dependence of fluorescence on the filament length. 

The exponential dependence is valid under the 

condition of a stationary population inversion only. 

In filament driven laser the pump is the 

femtosecond laser pulse and amplified spontaneous 

emission (ASE) is about nanosecond [1]. The laser 

generation is built up under the condition of a 

decaying population inversion which has a decay 

rate on the same nanoscale time scale. The filament 

length is calculated from the laser power assuming 

the direct proportionality between these values. 
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Multiple filament formation is expected at high 

levels of laser power, and the assumption is that the 

filament length is proportional to the laser power. 

The generation of micro joule pulses from a cavity-

free nitrogen laser which uses the plasma channel 

traced by a femtosecond laser filament as its active 

medium. In the lasing process, the electronic 

transitions of nitrogen are the same as in the 

conventional discharge-pumped nitrogen laser. In 

the discharge-driven scheme, the upper lasing 

triplet
3

uC  in the three-level nitrogen laser is 

populated by electron impact excitation from the 

singlet ground state
1

gX  . This gives rise to an 

efficient fluorescence in the near-UV spectral range 

due to radiative transitions between the vibrational 

manifolds of 
3

uC  and
3

gB  states. The control 

over the density and temperature of electrons is of 

key importance for obtaining population inversion 

and lasing between these states. The impulsive RF 

or capacitor discharge caused to rapid joule heating 

of electrons due to collisions with neutrals leads to 

the formation of non-equilibrium energy 

distribution of electrons. The non-equilibrium 

energy distribution and the plasma concentration 

are maintained throughout the discharge, resulting 

in a sufficient amount of hot electrons – which is 

needed for efficient pumping. In a laser filament, 

the electronic energy distribution is formed on the 

time scale of the femtosecond laser pulse by the 

optical field ionization process. After the femto-

second pulse, the resultant energy distribution 

function evolves freely as the plasma can concen-

tration decays. Therefore, the required
3

uC  exci-

tation by electron impact can be achieved within 

the average lifetime of the plasma electrons. By 

using a single femtosecond pulse, we cannot 

control the electron temperature during the buildup 

of population inversion, nor to control the duration 

of the time window within which the nitrogen laser 

is pumped. The electric discharge pumping, which 

maintains hot plasma, in the femtosecond filament 

the optimal electronic energy distribution is 

governed by optical field ionization and therefore is 

determined by the intensity and the optical cycle 

duration. The effect of intensity clamping pre-

cluded the possibility of direct scaling of the 

temperature of electrons in a filament via an 

increasing of the energy pulse. The plasma density 

is limited by the self-consistent balance between 

self-focusing and plasma refraction when focusing 

conditions are fixed. The coherence length of ASE 

is determined by the radiative lifetime. We need to 

inspect and analyze the efficient lasing of 

molecular nitrogen in a femtosecond filament. In 

this process the excitation energy of argon atoms 

transfers to molecular nitrogen. Then, excited argon 

atoms provide a collisional pump for laser 

transitions of N2 in a laser-induced filament, as 

same as hot electrons in a discharge-pumped nitro-

gen laser [1]. 

 

The analytical model is used to analyze the lasing 

in a laser-induced filament which includes the fila 

mentation dynamics and of plasma kinetics in the 

wake of the filament. We get the electron density 

and the intensity of the laser pulses. The target is to 

solve the system of plasma kinetics equations 

jointly with the equations for the electron 

temperature and the vibrational temperature of 

ground-state nitrogen molecules. The system is 

described by the rate equations which are related to 

electron temperature and the vibrational 

temperature of ground-state nitrogen molecules. 

Under some assumptions we get the reduced rate 

equations. The gas temperature (T ) is transform to 

a new function which is dependent onT and , 

𝑇𝛯 ∈ ℕ ; Ω ∈ ℝ, parameters. System fixed points (
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*

vibrT ,
*

vibrT ) are calculated and are dependent on 

system parameters. The times of vibrational 

relaxation through N2-N2 (
2,VT N ) and N2-Ar (

, rVT A ) collisions are estimated using the Landau-

Teller approximation. System reduced rate 

equations linearization is done and calculated 

characteristic equation. 

 

System stability and stability switching is inspected 

under parameters variation, and we implied the 

stability behavior by eigenvalues expression (trace 

and determinant elements). By inspecting the trace 

and determinant elements we can detect the 

stability state of our system. We categorized system 

fixed points by eigenvalues to saddle point, nodes, 

spiral, and centers (oscillatory system), star nodes 

and degenerate nodes. We additionally detect a 

whole line of fixed points, or a plane of fixed 

points. 

 

The system critical parameters are the key element 

which establish the trace ( 1 ) and determinant (

2 ) value and then the stability state of our system 

[7, 8]. Upon changing the gas temperature ( T ) 

values some interesting behavior is inspected in our 

nitrogen gas laser filament plasma kinetic system. 
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